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1 Introduction

1.1 Notation
In these notes we will work in God-given units where:
h=c=1. (1.1.1)
In this system of units:
[length] = [time] = [mass] ! = [energy] ' . (1.1.2)

This is a common choice in Quantum Field Theory and is also the system used in the book by Peskin
and Schroeder [1], which heavily influenced and inspired this text. The mass of a particle is thus given
by its rest energy or its inverse Compton wavelength:

1

m:EO:X- (1.1.3)

As is also common in QFT, we will use the metric signature (4, —, —, —). This means that the Minkowski
metric is given by:

g = g" = diag(1,—-1,-1,-1). (1.1.4)

4-vectors are thus marked as 2# = (20, 2!, 22, 23) = (2%, 2%). Using the metric, we can raise and lower
indices:
v LV
Ty = G =g"z, . (1.1.5)

Covariant derivatives 0, and contravariant derivatives 0* are defined as:

0 0
0 0
= — =
0 5. <6$0, v> . (1.1.7)
%(ayb”) = 51 bY = b (1.1.8)
0

In Minkowski space it also holds that g*, = §*,. We will also use the Einstein summation convention,
which means that whenever an index appears twice in a term, it is summed over. For example:

AMB;; == AOBO + AlBl + A232 + ASBg . (]_]_9)

Vectors will be denoted by boldface, e.g. p, and the magnitude of a vector will be denoted by |p|. The
Hermitian adjoint of an operator A will be denoted by AT = (A*)T. Same goes for a column vector v,
where v = (v*)T is a row vector with all components complex conjugated. The complex conjugate of a
scalar quantity a will be denoted by a*.

1.2 Why Quantum Field Theory?

We use Quantum Field Theory (QFT) to describe the fundamental interactions of particles. This theory
successfully describes the electromagnetic, weak and strong forces. It is often called the Basic Theory of
Nature because it is the most fundamental theory we have. It correctly joins the concepts of Quantum
Mechanics and Special Relativity.

QFT is also very practical since it uniquely describes the possible interactions of particles as opposed to
one-particle Quantum Mechanics where we have complete freedom in choosing the potential. In QFT,
the interactions are fixed by the symmetries of the theory. For example in Quantum Electrodynamics
(QED), we add the gauge symmetry U(1) to the free theory to get the full interacting theory. The
standard model of particle physics is a QFT with the gauge symmetries SU(3)c x SU(2), x U(1)y



1.3 Fields
Fields are the basic building blocks of Quantum Field Theory. We’re already familiar with them from

classical physics, where they describe the state of a system at every point in space and time. In Quantum
Field Theory, fields are promoted to operators, which act on a quantum state and create or destroy
particles. Fields in QFT differ with respect to spin. Scalar fields have spin 0, vector fields have spin 1,
spinor fields have spin 1/2 and so on. Particles are then excitations of these fields.
Classical scalar fields

e Temperature field T'(x,t)

e Pressure field p(x,t)

e Density field p(z, t)

Classical vector fields
e Velocity field v(x,t)
e Electric field E(x,t)

e Deformation field u(a,t)

Quantum fields
e Scalar field ¢(x,t)
e Vector field A*(x, 1)
e Spinor field ¥ (x,t)

In Quantum Mechanics we can describe a particle with aT|O>7 where a' is the creation operator. In QFT
the same representation is given by ¢'(x,)|0), where ¢f(x,t) is the creation operator of the field ¢(z, ).
Friendly Reminder: Remember that in QF T, fields are operators which in general do not commute.

1.4 Why fields and not particles?

This question is analogous to asking why we prefer to use fields instead of Relativistic Quantum Mechanics.
We cannot use one-particle Quantum Mechanics to describe the interactions of particles. Even if we were
to describe the process ete™ — v — uTu~, we can not localize the particles in space and time such that
pairs of particle-antiparticle are not spontaneously created due the uncertainty principle. The second
reason is Causality. Measurements of quantities are not allowed to be casually related. Relativistic
Quantum Mechanics does not satisfy this requirement.

Example for Non-Relativistic Quantum Mechanics: Say we want to evolve a state |xo) to a state
|z) at time ¢t. We can do this by applying the time evolution operator U (t):

U(t) ~ (z|e” |z, . (1.4.1)

We can insert the momentum completeness relation into this expression, which on its own is equal to the
identity operator:

1- [ o lpitol. (1.4.2)

Taking into account that we’re observing a free particle where H= p?/2m, we can write the following
expression:

. p2
1o / dp e~ 57 (a|p) (p|o)

] (1.4.3)
x /dp e—i%mteip‘(m—wo) )



Looking at only the x coordinate we get the following:

oo ) an ) 1 . . 2
1, x / dp, e PzmttPe(r=m0) o _—_ exp iz = zo)"m (1.4.4)
—o0 Vi 2t
Thus the time evolution operator is given by:
1 i(x —xo)*m

This means that |U| # 0 for every combination of &, &y and ¢ which violates causality.

Example for Relativistic Quantum Mechanics: Analogous to the non-relativistic case, we can
write the time evolution operator as:

U(t) ~ (e ) (1.4.6)

however in this case the Hamiltonian is given by H=. p? +m?2. After inserting the identity operator
in the form of the momentum completeness relation we get:

U(t) x /dp e~ WPt pip-(@=@o) (1.4.7)
Integrating over the expression we get:

1 e’}

U(t) o</ d(cos 0) 277/ pPdpe = ePlz ol cosd (1.4.8)
-1 0

This integral is not easy to solve but using something like Wolfram Mathematica we can come to the

conclusion that |U| > 0 also for || > ¢t which violates causality.

1.5 Comparison of Classical Mechanics and Field Theory
Classical Mechanics

In classical mechanics we can describe the state of a system using generalized coordinates ¢; and general-
ized momenta p;. These quantities are functions of (for example) time. The Lagrangian of the system is
some function of the generalized coordinates, their time derivatives and possibly time. The generalized
momenta are given by the partial derivative of the Lagrangian with respect to time derivatives of the
generalized coordinates. Mathematically formulated:

L(qiaq'iat) ) (151)
oL
Pi= G (1.5.2)

Classical Field Theory

In classical field theory we can describe the state of a discreet system using fields ¢(x;,t). We can think
of ¢ as the generalized coordinates which are functions of both space aand time. The Lagrangian density
of the system is some function of the field of generalized coordinates and their space and time derivatives.
The conjugated momenta are given by the partial derivative of the Lagrangian density with respect to
the time derivatives of the field. Mathematically formulated:

L(d(xj,t), 0ud(x,t)) (1.5.3)
oL
(0o¢p(zj,1))

where we have used the notation 9,, = % = (0o, V).

(z;,t) = (1.5.4)

To describe a continuum of particles we essentially have an infinite number of generalized coordinates.
Thus we use the arguments x and ¢ to describe the field ¢(x,t) and the previous relations become:

£(¢(m7t)’au¢(m’t)) ) (155)
oL

1) = S o)

(1.5.6)



Quantum Mechanics

In Quantum Mechanics we promote the generalized coordinates and momenta to operators #;(t) and p;(¢).
These operators act on a quantum state and create or destroy particles. The Hamiltonian of the system
is some function of the operators and possibly time. The commutation relation between the operators is
given by:

[Zi, D] = ihdyj - (1.5.7)
[, 2] = [pi, D] = 0.
Quantum Field Theory

In Quantum Field Theory we promote the fields to operators. As such we have the field operator g{)(:c, t)
and the conjugated momentum operator II(x,t).

[ba(@s, ), Ty (yi, )] = ihidapdjic - (1.5.9)
[ba(@jit), o (yr, )] = [a(;, ), Iy (ye, )] = 0. (1.5.10)

Again in the case of a continuum we use an infinite number of generalized coordinates. This is called the
Canonical Quantization of the field. The field operator is then ¢(x,t) and the conjugated momentum

operator is II(x, t). The commutation relations are given by:

[ (@, 1), 11y (y, t)] = ihdapd(x — y) - (1.5.11)
[éa(.’L’,t), ng(yvt)] = [ﬂa(w,t), ﬂb(yvt)] =0. (1'5'12)

1.6 Pictures in Quantum Field Theory
1.6.1 Schroédinger Picture

Schrédinger’s picture is the most common formulation of Quantum Mechanics in which states evolve in
time while operators remain constant (that is, time-independent). The state of a system is given by a
state vector ). This state can be evolved in time by the time evolution operator U(t). In the case of a
time-independent Hamiltonian, the time evolution operator is given by:

U(t) = et (1.6.1)
(1)) = U (B)[1(0)) - (1.6.2)

However if our Hamiltonian is time-dependent, where Hamiltonians at different times do not commute,
the time evolution operator is given by:

.
U(t) = Texp (;/ H(t’)dt’) : (1.6.3)
0
where T is the time-ordering operator (which we will introduce later). This means that in the Schrodinger

picture the field operators are time-independent while the states evolve in time.

ip — o), l(z). (1.6.4)

1.6.2 Heisenberg Picture

In the Heisenberg picture, states are time-independent while operators evolve in time. The state of a
system is given by a state vector |¢). The time evolution of an operator A is given by:

Aty =UT AT (1) , (1.6.5)
where U (t) is the time evolution operator. The time evolution operator is given by:
Ut) = et (1.6.6)
Field operators in the Heisenberg picture are time dependent:

(), pit)  —  d(x,t), (. t). (1.6.7)



1.6.3 Interaction/Dirac Picture

The Interaction Picture, also known as the Dirac Picture, is an intermediate representation between the
Schrodinger and Heisenberg pictures. In this picture, states as well as operators are time-dependent.
The interaction picture is useful when dealing with changes to both the states and operators due to
interactions. To switch into the interaction picture we split the Schrodinger picture Hamiltonian into two
parts:

H=Hy+ H; (1), (1.6.8)

where Hy is the free Hamiltonian which we know how to solve and H; is the interaction Hamiltonian which
is harder to analyze. Another common choice is to split the Hamiltonian into a time-independent and a
time-dependent part. Let [1g(t)) = e~*7*|1)(0)) be the time-dependent state vector in the Schrédinger
picture. The state vector in the interaction picture is defined with an additional time-dependent unitary
transformation as such:

[Wr(t)) = o5t |y (t)) - (1.6.9)
An operator in the interaction picture is defined as:

Ar(t) = etflost Ag(t)e~HHost (1.6.10)

Since we take Ag from the Schrédinger picture, it is generally time-independent. In the case of a free
Hamiltonian the interaction picture is the same as the Schrodinger picture, as there is no included
interactions:

Hoy = etHostHy gemtHost — [ o . (1.6.11)

This holds true since operators commute with differentiable functions of themselves. For the interaction
Hamiltonian we generally have: . 4
Hyp = efost[y getHost (1.6.12)

The operators are the same between the Schrédinger and interaction picture if [Hy g, Hr s] = 0. Trans-
forming Schrodinger’s equation into the interaction picture we get:

i (1)) = Hr(Olr(0). (1.6.13)

If the operator Ag is time-independent then the corresponding time evolution for the operator in the
interaction picture is given by:

z‘h%fll(t) = [A;(t), Ho5) . (1.6.14)

In the interaction picture operators evolve in time like operators in the Heisenberg picture with the
Hamiltonian Hy . Just as a sanity check, we can see that expectation values of operators in the interaction
picture are the same as in the Schrodinger picture:

(Ar(t)) = (1O Ar(Olr(8) = (s (t)]e”ostetost Ag(t)em Hostet o5ty g (1)) . (1.6.15)

2 Real Scalar Fields

Excitations of the real scalar field represent electrically neutral scalar particles. Given that the field is
real, we have the property that ¢(x,t) = ¢*(x,t). We want to find the equations of motion for such
fields where we must make sure that solutions are Lorentz invariant and that they obey relativistic
kinematics. Solutions are Lorentz invariant if, for a Lorentz transformation A, it holds that ¢(Ax, At)
also solves the equations of motion if ¢(x,t) does. We'll see that the Klein-Gordon equation satifies
these requirements. It’s given by:

(O+m?) ¢(z,t) = 0,0"p(, t) + m*¢(z,t) =0, (2.0.1)

where [0 = 9,,0" is the d’Alembert operator. The Klein-Gordon equation is the relativistic generalization
of the Schrédinger equation. We can quickly see that the Klein-Gordon equation obeys relativistic
kinematics by considering the energy-momentum relation for a free particle. Assuming that we have



solutions in the form of plane waves ¢(x,t) = Ae!P®) we can find the energy-momentum relation by
inserting the solution into the Klein-Gordon equation:

A(zix)?eTPT 4 Am2etPT =0, (2.0.2)
—pP+m’=0 = p=(Ep) p’=pp", (2.0.3)
= E?=p’>+m?. (2.0.4)

Note: Here p-x denotes the 4-vector dot product p,z* = Et —p - x.

2.1 Basics of Classical Field Theory

Before we get into the details of the real scalar field, we need to understand the basics of classical field
theory. Lets start with the Lagrangian density £(¢,0,¢). We will derive the equations of motion using
the Euler-Lagrange equations. The Euler-Lagrange equations come from the principle of least action,
where we slightly perturb the field ¢ — ¢ 4+ d¢ and require that the action is stationary. The action is
defined as:

ta
S= [ dt /dwc. (2.1.1)
t1
To keep the action stationary we require:
00|t e, =0, (2.1.2)
0¢||z|—o00 = 0. (2.1.3)
which resultsin 5 =0. (2.1.4)

The Euler-Lagrange equations are derived by considering the variation of the action:

oL
58 = /dt/ [ 5¢+88H¢5au¢} (2.1.5)

where we can substitute the second term from the expression for the full derivative:

O [33@54 = O {68 QJ o¢+ aama 109 - (2.1.6)

Thus we are left with:

6Sf0f/dt/ [ 56— 8, <agf¢>5¢+a <aau¢5¢>} (2.1.7)

where the last term becomes an integral over the edge of the volume. Since we demand that d¢ = 0 when
|| — oo, this term vanishes. Thus 65 = 0 for all §¢ when it holds that:

oL { oL ]—o (2.1.8)

dpa " 00,04

which are called the Euler-Lagrange equations.

The Hamiltonian and the Conjugated Momentum

We are still in the classical regime where from regular classical mechanics we know that we can define
the generalized momenta as:

oL
= 2.1.9
where L is the Lagrangian. The Hamiltonian is then defined as:



In the context of field theory the Lagrangian is replaced by the Lagrangian density L£(¢(x;), 0,0(x;)) as
follows:

L= /d:l: L= AzL(x)). (2.1.11)

Taking this change into account we can find the conjugated momentum just like in the case of classical

mechanics: 05 AwL(d(x,)
p(x;) = 0L _ 92, 00HO)) N, 0L (2.1.12)
Op(x;) 0d(x;) I¢(:))
From here we can read that the conjugated momentum is defined as:
I(x;) = .aﬁ . (2.1.13)
op(x;)

As in the case of classical mechanics we can now write the Hamiltonian as:

H =3 Aall(@)d(e) ~ ) Awllx) = Aw (H(:ci)d')(wi) - E(wi)) , (2.1.14)

from which we can read the Hamiltonian density as:

H = T(x)p(x;) — L(x) - (2.1.15)

2.1.1 Exercise: Classical Quantization of the Deformation Field in a Crystal Lattice

Consider a 1D crystal lattice with atoms of mass m and lattice spacing a. We can denote the displacement
of the n-th atom from its equilibrium position as ¢, (t). We want to find the Lagrangian of the system
and quantize it. From classical mechanics we know that:

L=T-V, (2.1.16)
T= Z%qﬁi (2.1.17)
V= Z 5(¢n+1 - ¢n)2 ) (2118)

where k, is the spring constant. To generalize the displacements qgn(t) to a field ¢(x,,) lets denote:
Gn(t) = a'?@(wn = na,t), (2.1.19)

where a is the lattice spacing. The Lagrangian then reads:

ma - CL3 x 2
L=>Y" [2&(%) - kSQ (822:)) ] , (2.1.20)

where we’ve introduces the spatial derivative as:

Grst — bn = a2 (P(xn + a) — P(,)) ~ a3/2% . (2.1.21)

We can rewrite this Lagrangian as a sum over a Lagrangian density (discreet analogue of an integral):

L= AL(z,) =) a [T;‘gg,z(xn) - kSQa (&;%)) ] ’ (2.1.22)

from which we read out the Lagrangian density:

2 x 2
L(zn) = lgldy(xn)— s ((%( ")> ] : (2.1.23)




Now to find the equations of motion we apply the Euler-Lagrange equations (2.1.8) to get:

0 (0L 0 oL
o—-5(%)- o (55
=2 (o) 2 (a2, -

which gives us the following equation of motion:

o (xn) B ksa? 02¢p(x,,)
T ok (2.1.25)

which is a wave equation for the deformations with the speed ¢? = ksa?/m. Now lets write ¢(x,,t) as a
combination of plane waves:

(b(x'rwt) = f(xn - Ut) + g(xn + Ut) = ZA’C (e—i(wkt—kxn) + ei(WRt_kxn)) . (2126)
k

Inserting this into the wave equation we find the dispersion relation:
wy = *ck . (2.1.27)

We can also derive the Hamiltonian density using (2.1.15):

H(z,) = % (méﬁz(xn) + kya? <8¢(x")> ) : (2.1.28)

oxy,

where we used the conjugated momentum II(z,) = dL/d¢(x,) = me(x,). If we insert the plane wave
expansion into the Hamiltonian density we find that:
E o< |Ag]?--- = (E is continuous) . (2.1.29)
Now to restrict the values of k, let us imagine that we have periodic boundary conditions ¢(z,) =
¢(x,, + Na) where N is the number of atoms in the 1D lattice. We find that:
2
knaN =2t = kn:n—;, n=01,...,N—1. (2.1.30)
a

For a given k, Ay, can take any value, which means that energy is continuous. With PBC we’ve discretized
modes k — k, but not their amplitudes. Going forward we will drop the index of k,, to keep equations
cleaner but do keep in mind that PBC limit us to discreet modes. To quantize the field we need to
impose commutation relations between the field and its conjugated momentum. Lets first promote the
field and its conjugated momentum to operators:

Slaat) =3 A [ake_i(w’“t_kx") + alei(“kt—’”ﬂ : (2.1.31)
k
f[(:cn, t)y=m Z Ay [fiwkakefi(w’“tfkw") + iwkazei(“’kt*m)] , (2.1.32)
k

where aj and a,t are the annihilation and creation operators for a mode with wavevector k. Now we
postulate the canonical commutation relation:

[D(2n, 1), TI(2pm, t)] = i6pm - (2.1.33)
Lets write this commutator out explicitly for ¢t = 0:
[D(n, 1), TL(2, )] = ZAkAk/(—iwk/)ei(m”*k,mm) (—Q[ak,a;D m
kK’

— ZAkAk/(_iwk/)ei(kanrk’zm) (_26kk/) m
Kk’

= Z 2mikaieik(z"7“"T”)
k

i (2.1.34)



where we used the commutation relation [ay, aL,] = 0 and defined the normalization constant Ay such

that:
1

Ay = ————. 2.1.35
b V2mwipNa ( )
Plugging this back into the Hamiltonian density and summing over all lattice sites we get:
. m x ks a? A 1 - mc?
H= — = —II? — 2 (2.1
I L B Dl P R I RCAE

We can better understand this Hamiltonian if we write it in terms of ladder operators. Besides the
expression from Equation (2.1.32), we’ll also need the spatial derivative of the field operator:

O (s t) = ZAk (ikake_i(”’“t_’”") - ikaLei(‘“kt_k””")> . (2.1.37)
k

Lets simplify the squares of these two operators. For the conjugated momentum operator we get:

1%(x,,0) = Zmzwkwk’AkAk’ [*akakfei(k%’)z" + akaL gilh =k )
Kk

+ afage Iz — glaf e iR ] (2.1.38)

Now we sum over all lattice sites using PBC orthogonality:

N-1

a3 KT — Ny (2.1.39)
n=0
N-1

a Z e kRN — NGy (2.1.40)

. y /
This means that the aras e?*T*)%n term becomes:
. ’
a E E m2wkwk/AkAk/(—akak/el(k"'k )w") =
n k,k’
= —alN E mzwkwk/AkAk/akak/(?k/’,k
kK’
= —aN E miwiAlara_y , (2.1.41)
k

where we used wyy = w_j, and the usual real-mode normalization Ay = A_, = Ay. The agay, T eilk=k")an
term becomes:

aZ Zm wkwk/AkAk/akak,e k=K )zn aNZmQaziAkakak . (2.1.42)
n kK

The other two terms are simplified in a similar manner as:

aZZm wkwk/AkAk/ak e 1k K)zn — aNZmzw,%Akakak , (2.1.43)
n kk/ k

azZm2wkwk/AkAk/(—alaz,e_i(k+k/)z7’) = —aNZm%)iAkaka k- (2.1.44)
n kk’ k

Combining all these results we get:

a Z ?(z,,0) = aNZm2w,2€Ai [—aka,k + agal + alay, — aLaT_k} . (2.1.45)
k

Performing the same steps for the spatial derivative of the field operator we get:

a Z ) xn, =alN Z kQAﬁ {aka_k + akai + azak + alaik} . (2.1.46)
k



With these two pieces we can now assemble the Hamiltonian:

7= 3 [ 0,0+ 201, (0,0
~ 2m 2
= Z % {[—w,% + k) {aka,k + aLaT_k} + [wi + K] [akaL + azak} } ) (2.1.47)
k
Since our dispersion relation is w,% = c?k? the first term vanishes and we are left with:
H= Z %2@% (aka;i + a}iak) . (2.1.48)
k
Using the commutation relation [ag, a%,] = 0, and the definition of our renormalization constant A,, we

can rewrite this as: )
=3 (a;ak + 2) . (2.1.49)

This is simply the Hamiltonian of a Linear Harmonic Oscillator (LHO), which means that different Fourier
modes k,, are independent from each other. From this we can see that the ground state is:
HIO) = Eolo) = Eo=S 2%, (2.1.50)

2
k

which is the zero-point energy of the quantized deformation field in the crystal lattice. The excited states
are given by:

1
alloy: E=uwy <2+1>, (2.1.51)

(@)"[0): E=wy (; + n) . (2.1.52)

This means that for a specified Fourier mode k we can have any number of quanta n in that mode. We
can interpret these quanta as quasi-particles called phonons. Phonons are bosons which means that they
obey Bose-Einstein statistics, hence why a single mode can have any number of quanta.

2.2 The Klein-Gordon Equation’s Lagrangian

At this point we can guess the Lagrangian density for the Klein-Gordon equation. It must be a Lorentz
scalar and reproduce the Klein-Gordon equation when we insert it into the Euler-Lagrange equations.
Since the Klein-Gordon equation is linear and second-order in derivatives, the Lagrangian should be at
most quadratic in ¢ and only involve first-order derivatives. Thus we expect the form to be:

L = a(0,6)(0"¢) + bp?, (2.2.1)

where a and b are constants. If we apply the Euler-Lagrange equations (2.1.8) to this ansatz we can find
the constants to be a = 1/2 and b = —m?/2. Thus the Lagrangian density for the Klein-Gordon equation

1S:
2

1 " m
L =5 (0,0)(0"0) - -0°. (2:2.2)

This corresponds to the Lagrangian density of a free real scalar field (where free means no interaction
terms) which we can rewrite in terms of time and spatial derivatives as:

L= (&~ (Vo) —m*). (2.2.3)

We can easily find the Hamiltonian density by using the conjugated momentum, which we can calculate
from the Lagrangian density:

me 9% M=, (2.2.4)
¢
and thus using the definition of the Hamiltonian density we get:
. . 1/.
H=Tp—L=¢— 5 (¢2 (V) — m2¢2) : (2.2.5)

10



2.3 Noether’s Theorem

Noether’s theorem is a powerful tool in theoretical physics which was first formulated by Emmy Noether
in 1915.

Theorem: Noether’s Theorem

If equations of motion are invariant under a continuous transformation of the fields ¢, — ¢ +aAd,
and it holds that the Lagrangian density stays the same up to a 4-divergence £ — L + a0, J*,
then there exists a conserved current j# and a conserved charge () which are given by:

for which it holds that:

In other words: For every continuous symmetry of the action there is a conserved current and
a conserved charge.

\

Lets talk a little more about the transformations in question. We said the theorem applies to contin-
uous transformations of the fields. This excludes transformations such as charge conjugation or parity
inversion. Continuous transformations transformations are transformations that can be parametrized by
a continuous parameter «. Notice that this parameter is not dependent on the fields or rather their
spatial coordinates. This means that the transformations that Noether’s theorem applies to are global
transformations. Likewise this does not mean that A¢a|b0undary = 0 always holds.

Proof of Noether’s Theorem

We can prove Noether’s theorem by considering the variation of the action under the transformation
ba — Pa + alAp,. We assume that ¢, satisfies the Euler-Lagrange equations. To keep the action
stationary we require that the Lagrangian either doesn’t change AL = 0 or that it changes by a total
derivative AL = ad,,J*. That means that in the first order we have:

AL = ad,J" = Z ( OL Npot 25

5o 55,9, il A(ba) : (2.3.1)

the second term can be further expanded so that the expression reads:
oL oL

AL = Ay + 0y | 75— A¢a Oy A¢y, . 2.3.2

2 (35,200 00 g, 500] 0 g | 20 ) (232

The first and last term here can be combined to give us the Euler-Lagrange equations (2.1.8) which yield
zero as ¢, satisfies them. Thus we are left with:

oL
0 ——Ap,—J* | =0, 2.3.3
I ( - aaﬂ(ba d) ) ( )
where we can identify the conserved current j* as the contents of the parenthesis.
oL
= —— Aoy — JH*. 2.3.4
j 90,00 ¢ (2.3.4)

11



From here we can see that the first relation in the theorem holds if:

, dj® .
-0
= % = —Vj(x,1). (2.3.6)

The second relation in the theorem holds if we integrate the first relation over all space:

0(
/wdm = —/Vj(w,t)dm. (2.3.7)

Turning the right side integral into a integral over the boundary we can see that the second relation holds
if the current j* goes to zero at infinity. Mathematically this is expressed as:

a jo(w7t)d33 = 0= —Jboundary = |j(w>t)‘|m\—)oo =0. (2.3.8)

2.4 Derivation of the Energy-Momentum Tensor

The energy-momentum tensor is a very important quantity in field theory. It is a tensor that describes
the energy and momentum density of a field. We can derive the energy-momentum by considering the
change of the action under a Lorentz transformation, more specifically a translation.

Let us consider a transformation &” — x” + a” where a” is a constant. The action changes as:
S = /E(w)d4:c - S'= /ﬁ(d)(w—ka))d‘*:r‘ (2.4.1)

Our transformation is a translation, which means that the field ¢ changes as ¢(z) = ¢(z + a) = ¢(x) +
a’ 0,0 = ¢(x) + AL, where a = a¥ and AL = 9,¢. With this the Lagrangian density changes as:

L(z) — Lz+a)=L(x)+a"d.L, (2.4.2)
where we can represent 9, L as 0,,(0,"L). From this we can identify the quantity J*, = §,"L.

Remember: Energy-Momentum Tensor

Now we can use Noether’s theorem (2.3) to find the conserved current j# which represents the
energy-momentum tensor.

oL
it = ———0 - (SUHE = T'uy
% 90,9 e
As is stated in Noether’s theorem 0,T%,(x,t) = 0 which means that the energy-momentum tensor

is conserved. We can now check the components of the energy-momentum tensor by calculating the
conserved charges. Let’s first start with v = 0:

Q= /jg dz:/(%fﬁ@—ﬁ) dx = (2.4.3)

- / (H(m)q's(m) 7,c) de = /H(m) de (24.4)

where we have identified the Hamiltonian (2.1.15) as the integrand which is constant according to
Noether’s theorem dE/d¢t = 0. The Hamiltonian represents the energy density of the field. Now lets
calculate the conserved charge for v = ¢ where ¢+ = 1,2, 3:

Q= [ide= [ M@0i0(@) deo. (2.4.5)

where we can identify the integrand as the momentum density of the field p' = Il(x)9;¢(x). Again
according to Noether’s theorem the momentum density is conserved dp/dt = 0.

12



Exercise: Invariance and conserved current for a given Lagrangian

Consider a Lagrangian in 2D field theory given by:
L=08,0'0"¢ — p*d'6 + Mo'9)? |

where ¢ = (¢1, ¢2)T. We want to show that the Lagrangian is invariant under the transformation
¢ — ¢+ ia®c®p where 0 are the Pauli matrices

L (01 2 (0 —i s (1 0
"‘(1 0)’ U_(z' 0>’ 7=\ -1)°

and a® = (a, 0, 0)T. We also want to find the conserved current. Remember that on conjugation of the
transformation the order of the matrices changes.

b+ it —s ¢t — iapta®
Solution: Let’s directly calculate the change of the Lagrangian under the transformation term by term:

0u9"10"' = 0, (6" —ia"¢lo®) (¢ +ia 0" ¢) =
= 9,070 ¢ + i (—(8,0") 0" ¢ + ¢T a0 9) + O(a®?) =
= 0,0'0"¢ +ia” (0,010" "¢ — 0,010 0" ¢) + O(a?) =
= 0,0'0"9,

which is therefore invariant under the transformation. For the second and third term we can prove
invariance by considering the invariance of ¢f¢ under the transformation:

¢1¢' = (o' —ia®¢To")(¢ +ia"0"¢) =
=¢'p+ plia®o%p —iapla®¢ + O(a®?) =
=66 +ia® [¢T0"¢ — ¢1o"¢] + O(a"?) =
=9¢'e,
with which we have shown that the Lagrangian is invariant under the transformation. For the second part
of the exercise we need to find the conserved current j#. Generally we can think of the transformation

of the field as ¢ — ¢ + aA¢ where in our case A¢p = ic%¢®. From this we can calculate the changes given
the Pauli matrix o' as an example:

_oa, |0 1) o] _ |@
so-e-f (2] ]

Apy =ips A = —igs ,
Apy =ip1 A¢y = —igy .

In the first part of the exercise we proved AL = 0 which means that J# = 0. Thus the conserved current
is given by:

From this we get:

2

L
J aam Adi + Z aam*

*

It is now convenient to write the Lagranglan in terms of dependance on the derivatives of the fields:

£= 0,019 +0* 1] + 1) =
= qu’{au(bl + au¢§au¢2 + f(¢) )

13



where we’ve considered that 0,¢,0"¢; = 0" ¢;0,,¢;. We’ve marked the dependece on just the fields (not
its derivatives) as f(¢). Now we can calculate the conserved current:

) . 9
55,4, 10" 61) b+ i (0

- 8 * OV 8 * QU *
_Zaaﬂ(ﬁl [ u¢16 ¢1] ¢2 53;“;52 [ u¢28 ¢2] ¢1 =
= 10" @] o + 10" P51 — 10" P15 — 0¥ Ppad] =
=i[0"¢1¢2 + 0”301 — 0" P15 — 0" P27 ,

which if we reverse the effect of the Pauli matrix o' gives us the conserved current:

L 030" P2 o1+

=i

gt =i [8“¢T01¢ — qSTal@“d)]

2.5 Quantization of the Real Scalar Field

We can quantize the real scalar field by promoting the field and the conjugated momentum to operators
é(x,t), T(z,t). We demand that the field operator satisfies the classic equations of motion (the Klein-
Gordon equation (2.0.1)). We also demand that the field operator and its conjugated momentum satisfy
the canonical commutation relations.

Remember: Canonical Commutation Relations

The canonical commutation relations for the field and its conjugated momentum are given by:
[b(x, ), 1y, 1)] = i6°(z — y) . (2.5.1)

The commutator of the field with itself is zero [qg( z,t), b(y,t)] = 0 Likewise the commutator of
the conjugated momentum with itself is zero [II(z,t), II(y, )] =

Classic Fields

Classically the field must satisfy the Klein-Gordon equation (2.0.1). For straight plane wave solutions
bz, t) = Aet'P'?) we have:

d . A
”)3,4,, (e7® 4 &) = ¢* . (2.5.2)

These satisfy the Klein-Gordon equation. We see that we can choose A, freely and since E o Af, we
have a continuous spectrum of energies. The conjugated momentum is given by:

dp

5 (—iEp) (e7W® —e®) (2.5.3)

Quantum Fields

Similarly to the classical case we can write the field operator with creation and annihilation operators:

n dp —ip-x ip-x
¢(m,t) = / WAP (ape p + 0,;6 p ) 5 (25.4)
where the creation and annihilation operators satisfy the commutation relations:

lap, al,] = (27)36%(p — p') , (2.5.5)

[ap,ap] =0, [a},al,] =0, (2.5.6)

and ap|0) = 0. Now using the Klein-Gordon equation:

8H8“gz3(ac,t) + mquS(:c,t) = / (ZdTp)gAp [ap ((—ip)“(—ip)u + mz) e~ T ] . (2.5.7)

14



We'd like to show that the commutation relations we postulated hold. If we take a look at the conjugated
momentum operator:

oL - d o ,
H(z,t) = 7(;3 =¢= / ﬁAP (—iEp) [ape™ P — aLe”"ﬂ . (2.5.8)

We claim that A, = 1/,/2E, for the commutation relations to hold. Lets check if this is true at t =0
since the commutation relations must hold at all times. Our operators ar then:

(@, t) = / (Qdf)?)\/;fp (ap + a*_p) P (2.5.9)
M(y,t) = / (;15)/3 (_’2\/%)) (a,,/ - aip,) e’y (2.5.10)

Now we can calculate the commutator:

@, ﬁ]:/ dp / dp' 1 (=iEp) ipaipa) [—[a,,, al ] +al,, a,,]]. (2.5.11)

Gn)? ) Gn)? 2, V2B,

Using the comutation relations for the annihilation and creation operators we can simplify the expression:

I dp 2FEui ;..
m = P i (=Y) — (e — ) . 2.5.12
6.1 = [ s s~ y) (25.12)
Thus we have shown that the commutation relations hold for the field and its conjugated momentum.
Using a similar method we can show that the commutation relations for the field with itself and the
conjugated momentum with itself hold. From all of this we see that the energy spectrum we get is
quantized because A, are exactly defined.

2.6 Operators for Observables in QFT

In quantum field theory we can define operators for observables. For example the operator A measures
the expected value of the observable A. Remember that the expected value of an observable can be found
by calculating eigenvalues of the operator:

Altpn) = Anlthn)
) = lenllton) |
p(An) = ‘Cn|2 .

What we’d like to do is find operators in the form A = f(¢,d,,¢) which are hermitian AT = A.

2.6.1 The Momentum Operator

The momentum operator is found by using the momentum density as we found in the derivation of the
energy-momentum tensor (2.4):

P = / ()0 ¢ () da . (2.6.1)
Inserting the operators we’ve found so far we get:
dp/ —iFE, ) dp 1 , )
D = d id ,—al , _ T ip’-x+ip-x 92.6.2
b / (B/ (277)3 \/E(ap a—p ) / ( Zp) (27T)3 \/E(ap + a_p)e , ( 6 )

where the dotted line indicates what we got by applying the derivative. Taking a further look at the
given integrals we can apply the comutation relations to the end exponential:

/dw/gg,ei(p/”)'wf(p,p') = /dp’é(erp’)f(p,p’) = f(p,—p). (2.6.3)

15



From this we can reduce our previous expression to:

; R ta —atal i
p= / 2rp P (‘2) l”i.%’.“.’.’ ~Oplp ~ Aplop T O-pip

where the dotted lines indicate terms that vanish due to commutation relations. Notice that the second
dashed line term is not of the proper order, for which we can use the commutation relations to rewrite it
as a,pai = atpa,p + (27)36(0). This gives us:

, (2.6.4)

P

= [ m (3) ot 7500~ ] 20

Many texts skip what I deem to be two crucial spets in this derivation. The first is that as we are
integrating over over all space the integral containing (p 6(0)) will vanish. Second is that there exists
an identity which links the creation and annihilation operators as such: aipa_p = —a;f)ap. This finally
brings us to the expression for the momentum operator.

Remember: Momentum Operator

The momentum operator is given by:

D= /WP aI,ap. (2.6.6)

Eigenstates: Lets have a quick look at the eigenstates of the momentum operator. We’d like to know
if the states af|0) are cigenstates:

pab|0) = [p, af)|0) + alp|0) ,

The underlined commutator can be calculated as:

. dp’
Pyl = / amp? e ay) =pap, (26.7)

where we used the commutation relations for the creation and annihilation operators [a;,apr, a;] =

aL,(QW)?’(S(p’ — p). Since p|0) = 0 we get:
pab|0) = pall0), (2.6.8)

which means that the states a;{,|0> are eigenstates of the momentum operator. We claim that this state
can be raised to the power of n. It is quickly shown that:

pal) |0) = npal'|0) . (2.6.9)

The n in the eigenvalue corresponds to the number of particles in the same state. What we’ve recieved
here is the Bose-Einstein statistics where one Fourier mode can have any number of excitations.

2.6.2 The Hamiltonian Operator

To find the expression for the Hamiltonian operator we can use the Hamiltonian density we found earlier
(2.1.15) and insert the field operators:

H= /ﬁ(m) de = / [f[Q(ac) +(Vo)? + m2$2} de . (2.6.10)

Now our professor described the simplification of this expression as a fun exercise. I might add the
solution later on. After simplification we get the expression:

- dp 1
H= /WEP? [al,ap + apa;'_,] , (2.6.11)
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where all that is left is to switch the order of the operators in the second term as we’ve done before when
looking at the eigenstates of the momentum operator. Thus we find the expression for the Hamiltonian
operator.

Remember: Hamiltonian Operator

The Hamiltonian operator is given by:

H:/é&

The second term represents the sum over all modes of the zero-point energies which is expected but Peskin
does comment that he finds it disturbing. It is this term that represents the 1/2 in the Hamiltonian of a
harmonic oscillator. This term has an intresting consequence which is that the energy of the vacuum is
infinite. We can see this mathematically as:

E, [a;a,, + %(2@35(0) : (2.6.12)

1
dpE

P p§(2ﬁ)35(0) = 00. (2.6.13)

o) = E0) > Eo= [

Lets have a look at the other energies just in case, so E — Ey > O:

Hal|0) = [af,, H]|0) + af,H|0) = (2.6.14)
= Epal|0) + Eoal0) = (Ep + Eg)al|0) . (2.6.15)
from which we can see that E — Ey = Ep, = 1/p? + m2. We've now laid out the necessary groundwork to

see that the excitation a;f,|()> represents a scalar particale with energy Fj, and momentum p. For multiple
creation operators at different momenta we get a multi-particle state like so:

aL;i...aL;RO) with E—Ey=mEi+---+m,E,, p=nip1+-+m,p,.

n

2.7 Vacuum Energy*

In QFT the vacuum energy is infinite for two reasons. We’ve already seen that the zero-point energy is
infinite. From this we can find the volume of the space over which we are integrating:

L/2

2n50) = [

dw/dp’ ei(P+p/)-m5(p+p/) _ V )
—L/2

We can try and find the energy density of the vacuum by dividing the vacuum energy by the volume:
EO dp 1
— = | ——=-FE,=00.
% / 2mp3a2 P~ >

This can be thought of as a harmonic oscillator per each Fourier mode. We can also estimate the reach

of our theory:
E 2 1 TeV)?
Voz/p2vp2+mzde( zV) ’

We can speculate about the origin of the infinite vacuum energy. One possible explaination would be
for example gravity that could feel the energy of the vacuum. It might make sense to remember that
only 4% of the universe is made up of visible matter. The rest is dark matter and dark energy. It is also
interesting to note that the observed cosmological constant is of the order of Agps = (10_3)4 eV3.

2.8 Normalization of the Momentum Operator

It is worthwhile to adopt a convention for normalizing one-particle states |p) o aj|0). The issue that
arises is that the normalization which is often used is not Lorentz invariant. The normalization condition
is given by:

(pla) = (2m)°3(p — q) - (2.8.1)
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We'd like to find the missing factor Bj, that makes the normalization Lorentz invariant. We can start by
defining:
Ip) = Bpal|0) . (2.8.2)

We demand the following to be true:
(pla) = BpBq(0Olaga}|0) = By(27)*3(p — q) - (2.8.3)

Normalization comes from the fact that the dot product must be conserved for all Lorentz transformations,
(g|p) = (q'|p’). Let’s consider a boost in the z direction and observe the changes. We get:

Py =73 — BE), Plo=p12 FE =~(E+Ops).

Here we can use an identity for the Dirac delta function:

5(f(z) — flan)) = 2 20). (2.5.4)
a(ﬂﬁo)

which stems from the defining property of the delta function for any test function g(x):

/g(ac)é(f(a:)) = Z Jg’(gz)ﬂ where f(z;) =0. (2.8.5)

Applied to the z component which we boost:

5 = ) = 30 42) ~ )| 2

(2.8.6)

From this we can see how the delta function transforms under such a Lorentz boost:
dp?,
Sp—q)=6(p' —q) =
( ) dps

=4(p' —d')r <1 + B((ji)
=4(p' - Q')%(E + Bps)

2F'
2F

S

Notice that the factor of 2 here is unnecessary but is conveniant since it cancels out a factor that is used
in the definition of the field operators (2.5.9). This problem of non-invariance of the normalization is
a consequence of Lorentz contractions when in a boosted frame. A box whose volume is V' in the rest
frame will have a volume of V/v in the boosted frame. From this we can find the missing factor Bp:

Bp=+2E, = |p)=/2Epal|0). (2.8.7)

2.9 Wave Packets

Here are some notes on wave packets. We can write the field operator as:

@) = [ o el (29.)

where we demand (¢p|¢) = 1 which we can prove like so:

<¢|¢>=/(;§3/(;§3\/JT\/;Tw*(p)w(Q)@qb/(2(17gg<p2(p):1. (2.9.2)

where we used the commutation relation (p|q) = (27)3\/2Ep+/2FE40(p — q). We can now use this like in
the wave packet from Quantum Mechanics, where we do the following:

be(@,t) = (z[q) = ™. (2.9.3)
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Since we do not have the operator & we use ladder operators of the field:

o' (@, 1)]0) = / W1 g (2.9.4)

(2r)? \2E,

Taking the non-relativistic limit we can find that this is analagous to a state with a well defined position
in Quantum Mechanics:

N.R. dp 1 imt ip-x
= — = . 2.9.
| aage ™) = Io) (295)

Thus we can say that the ladder operator a;f,zq in ¢T(x,t) creates a particle with the momentum q. The
wave function of such a state is 4(x,t) = e~*¢'®. This can be seen in action like so:

(alo! (x,1)|0) = (qlz) = vg(x,1) = ™. (2.9.6)

Similarly we can say that the ladder operator ap=q in ¢(x,t) annihilates a particle with the momentum
g. The wave function of such a state is ¢q(x,t) = €'?®. We can see this from the following:

vale,t) = (ala) = (plée. )la) = [ (;f’) ﬁe—i”wmm — e, (2.9.7)

2.10 Completness Relations

Mathematicians tell us that a Hilbert space H (not to confuse with the Hamiltonian) is complete if every
Cauchy sequence of vectors admits a limit in the space itself. This gives rise to complete orthonormal
systems of vectors in such a space. A set of vectors {1;};er C H is called an orthonormal system if
(¥i|t;) = di;. The set is additionally called complete if every vector in the space can be written as a
linear combination of the vectors in the set:

(Dlg) =D (Wl (Wild) Vi, € H. (2.10.1)

icl
2.10.1 Completness relations in QM

In Quantum Mechanics we have the following completeness relation:
1= |n)(n], (2.10.2)
n
Um) =" |n)(n|m) = |m) . (2.10.3)
where we sum over all possible states.

2.10.2 Completness relations in QFT

In Quantum Field Theory we have the following completeness relation:

Remember: Completness Relation in QFT

The completeness relation in Quantum Field Theory is given by:

1 | (%gzgjpxm (2,104
o) = [ o555 5 P)pla) = la) (2.10.5)

where we once again used the relation (p|g) = (27)%\/2Ep\/2F46(p — q). The delta function
ensures that we get the correct energy factor of 2Fp,.
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2.11 Causality and Correlation

Note that causality is not the same as correlation. Causality is the principle that an effect cannot occur
before its cause. Correlation is the principle that two events are related. Consider two measurements
O1(z) and Oy(y). They must not effect each other if # and y are spacelike separated (z — y)2 < 0. This
is achived if the two operators commute [O;(z), Oz(y)] = 0.

Lets consider that the two measurements are spacelike seperated. That means that there exists a frame
of reference where the two events happen at the same time 2 = 3° = ¢. In this frame the commutators
are:

[g{)(m,t)7 H(y7t)] = 15(58 — y) =0.

The last commutator is zero because the field and its conjugated momentum are at different points in
space. We can see that causality is trivially satisfied for real scalar fields where ¢ = ¢'. When we
have complex scalar fields or fermions we will need to introduce ladder operators for the creation and
annihilation of anti-particles to satisfy causality.

2.11.1 Quantum Entanglement

Quantum entanglement is a phenomenon where two particles are connected in such a way that the state
of one particle is dependent on the state of the other. This is an example of correlated events. Let’s
consider an example from Quantum Mechanics. Let’s have a two particle system with the following state:

_ b
V2

This state is a superposition of two spin states. We can prove that causality is satisfied for this state by
showing that the commutator of the two spins is zero:

12822 |90) = 83,2512 |¥) - (2.11.2)

Measurements of the spins will be correlated. If we measure the spin of particle 1 to be up, the spin of
particle 2 will be down. This is an example of quantum entanglement.

%) (Il e+ 1)l T)2) =[s=1,5.=0). (2.11.1)

2.11.2 Scalar Correlators

We can define the correlation function between two states as:

(&, xoly. yo) = (0ld(2)4! (y)0) . (2.11.3)

If ¢ > yo this represents a propagator.

2.11.3 Propagators

In QFT we write interactions such as:

Figure 2.1: A Feynman diagram representing an unknown interaction.

using propagators. The propagator is the correlation function of the field operators. We can write the
propagator as follows.
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Remember: Scalar Propagator

The scalar propagator is given by:

(Old(@)9! ()[0) if 2 > y°,

(016" ()d(z)|0) if y° > 20, (2.11.4)

Ay(z,y) = (0|7 [o()d! ()]10) = {

where 7 is the time ordering operator.

\

Cluster Decomposition Principle: In physics the cluster decomposition principle states that the
correlation function of two spacelike separated events factorizes. Something like this:

lim (O (x)|02(0)) = (O1)(O2) . (2.11.5)

|| — o0
The propagator is actually the Green’s function for a given equation of motion.
AG(r —rg) =6(r — ) . (2.11.6)

The scalar propagator Ay is the Green’s function for the Klein-Gordon equation. We will derive that the
expression for the scalar propagator is given by:

4 .
As(x—y) = / dp — N (2.11.7)

The dashed line indicates the expression for the scalar propagator. We can check that this is the Green’s
function for the Klein-Gordon equation by inserting it into the equation:

o o ) B d*p i N s 2y —ip (z—y)
(%W +m ) Ag(z —y) = / (2m)4 p2 —m2 + iE((*lp )(—ipu) +m%)e (2.11.8)
o 5(4)($ —y).

Derivation of the Scalar Propagator: We can seperate the problem into two cases. The first case is
when 20 > 9%, This will give us a pole at p:
pz—m2+i5:p8—p2—m2+is
= (po — Ep)(po + Ep) +ic
= (po — (Ep —i€))(po + (Ep — ic"))

, (2.11.9)
= (po — Ep)(po — Ep) + =
= (Po — 0 —
P P Po + Ep + Ep — Do
= (po — Ep)(po — Ep) + ic,
where we took into account that —p? — m? = —Ef,. From this we can see that there are two poles, one

at p’ = (B, — i) and the second at p°
scalar propagator. We need to solve:

B dp LPO je— - (z—y)
As(z—y) = / o) / 27 (o= (B — i9))(po £ (By —i2)) | (2.11.10)

Here we can make use of a property of the exponential function:

—(Ep —ie). We can now use the residue theorem to find the

DREa

exp(—i[pol(lal — i[b])(zo — o)) o exp(—ilpol[bl(z0 — yo 7 (2.11.11)

which states why an integral over an infinite semicircle in the upper half plane will vanish if 20 > 3°.
From that we can integrate. Remember the residue theorem:

]if(z) dz = —27TiZRes(f(z),zi) . (2.11.12)
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Which we now apply to our expression for the scalar propagator. We integrate around an infinite semicircle
in the upper half plane:

d _je—ip(z=y)
As(z —y) = / ( p4(_27”)

o) 2(Ep — ic) |p° = B, — ic
e—=0 (2.11.13)
dp 1 —ip-(z—
p

Similarly we can find the expression for the scalar propagator when 3° > ¥, where we integrate around
an infinite semicircle in the lower half plane. This gives us:

d4pl e—ip/»(y—m)

As(x_y):/(27r)4p’2—m2—|—i6 =--=Asy—x), (2.11.14)

/

where p = —p'.

3 Lorentz Transformations

As we've seen with real scalar fields we now have a method using different fields. This is as follows:
1. Perform Lorentz transformations on the field.
2. Find equations of motion that are invariant under Lorentz transformations.
3. Solve the equations of motion to find the field operators.
4. Quantization: impose commutation relations on the field operators.

If we have a solution to the equations of motion ¢ then the equations of motion are invariant under
Lorentz transformations if the transformed field ¢’(z’) is also a solution to the equations of motion.

Lorentz transformations form a group, meaning that if we have two Lorentz transformations L,L’ €
SO(1,3) then the product L'L = L"” € SO(1,3) is also a Lorentz transformation. The identity 1 is also
a Lorentz transformation and for every Lorentz transformation L there exists an inverse L~! such that
LL7'=1.

Lorentz transformations can be represented in different ways. In the case of vector fields we’ll mark
the representation of a Lorentz transformation L as M (L) = A*,, where this is mathematically a 4 x 4
matrix. Thus vector fields transform as:

AP AM AV = A (3.0.1)

More generally, any Lorentz group element L € SO(1, 3) has various representations M (L) depending on
the type of object it acts on. In the above example M (L) = A is the representation of L that acts on
4-vectors.

3.1 Properties of Lorentz Transformations

Lorentz transformations have some interesting properties that we can use. These appear due to the
metric tensor g"”. The identities are as follows:

m/.y/:aj.y:}...:}A“aAyﬁ:ga[_}7 (311)
AVaAVB =0aB = = Aua = (A_l)y . (312)

[e3
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3.2 Transformations of the Basis Vectors and Vector Components

A vector v can be expressed in a basis {é;} as a linear combination of the basis vectors:
v=> cié;. (3.2.1)
i

If we perform a liner transformation (rotation, or Lorentz boost, etc.), the basis vectors themselves
transform. To keep the overall vector v unchanged, the components ¢; must also transform. For example,
under a rotation R in 3D space, the basis vectors transform as:

é; = Rijéj , R e 80(3) R (322)
c;. = (Ril)jici . (323)

The same is true if we perform a Lorentz transformation, with M (L) being the matrix representation of
the Lorentz transformation L that operates on infinite-dimensional function space basis functions ¢,.

0=3 cada— 0" =Mdp; =M Na'c. (3.2.4)

3.3 Lorentz Transformations of Scalar Fields

Applying a Lorentz transformation to a scalar field does not change the field itself. It only changes its
argument ie. the coordinates at which the field is evaluated. The transformation of scalar fields is given
by:

dx) — d)=¢(") 2'=A'z. (3.3.1)

This means that the transformed field evaluated at a new point x gives the same value as the original field
evaluated at the corresponding pre-boost coordinate ' = A~'z. To show this very explicitly consider for
example that our original field ¢(z) has a maximum at some point z,,. After a boost a}, = Az, which
we can plug into ¢’ to get:

¢ (x),) = d(A"H(Azy,)) = (,,) = max. , (3.3.2)

which states that the transformed field ¢’ has a maximum at the boosted point z/,, ie. the location of

the maximum changes under a boost but the value of the maximum does not. This can be generalized
to any coordinate x which is boosted to ' = Az. We have:

¢'(a') = ¢/ (Ax) = (A~ (Ax)) = é(x) . (3.3.3)

Thus no value changes, only spacetime locations of these values change.

3.3.1 Example: Lorentz Transformation of the Klein-Gordon equation

As an exercise we can show that the Klein-Gordon equation from Equation (2.0.1) is invariant under
Lorentz transformations. Let us consider a general Lorentz transformation A. Our problem is:

9 9 2 _o 4 (22, 20/ () ) —
<8xu oz, (z) +m ¢(£)> =0 — (&W a2, () +m?¢'(z) ] =0. (3.3.4)
We solve this simply by using the chain rule to evaluate the derivative:

9 ey = O ga-1y) - 90@) 02 06(&)

815/1‘ (x) - axﬂ (A 'r) - a‘%a axu - a‘%a (A ) #7 (335)
where we have defined 7% = (A~1) L, So for two derivatives we have:

ai/ _ (A1) 1\ O 0 ~7Qﬁ8 0 -
ok axugb (gj) - (A ) M(A ) 97 OB ¢(‘T) =g 07 OB ¢(93) . (336)

where we made use of the properties from Equations (3.1.1) and (3.1.2). We can insert this into the
Klein-Gordon equation to get:

0o 0

5 5. (7)) + m?*p(7) =0, (3.3.7)
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which is exactly the same equation as before, just with a different argument . Thus the Klein-Gordon
equation is invariant under Lorentz transformations.

Let’s also quickly have a look at what happens to the Lagrangian (see Equation (2.2.2)) upon a Lorentz
transformation:
L — L' =LA t2). (3.3.8)

Action must be invariant if we want our equations of motion to be invariant:
S o = / LA L2)dy = / 4 £(F)det(A) = S | (3.3.9)

which checks out since det(A) = 1 for Lorentz transformations. This argument generalizes beyond only
scalar fields. For Lagrangians that involve spinor fields v or vector fields A* the combination of fields and
derivatives must be such that the action is invariant under Lorentz transformations. In this sense, the
Lagrangian density behaves as a scalar under Lorentz transformations, even though the fields themselves
transform non-trivially.

3.4 Lorentz Transformations of Vector Fields

In QFT we usually mark vector fields with A*(z) (usually marking the photon or gluon field) or V*#(x)
(which marks a general vector field). The transformation of vector fields is given by the following relations.

Remember: Lorentz Transformations of Vector Fields

The transformation of vector fields is given by:

Vi) — Vi(z)=RIVIA '), (3.4.1)
V@) — VF(z) =AY, VY(A lz). (3.4.2)

3.4.1 Example: Invariance of Maxwell’s Equations

The relativistic form of the first and second Maxwell’s equations are given by:
0 0 0

— | =—A" — AH =0 3.4.3
OxH (61’# () ox, (m)) ’ ( )

B F™ =0 —

The third and fourth equations (the ones that contain the rotors) are given by the Hodge dual of xF*¥,
but that is outside the scope of this course. Using the transformation of the vector field as stated above
one can show that it holds that:

0 <8AV’(I) _— A#’@;)) =0, (3-4.4)

Ozt \ Oz, ox,

where we used the transformation of the vector field as stated above A¥#(z) — A* (x) = A* , AY (A~ 'x).
For posterity here is the Lagrangian density of Maxwell’s equations. We get this result from taking Gauge
invariance into account, which we’re not going to do now but is a part of prof. Kamenik’s course Gauge
Field Theory. The Lagrangian density is given by:

L— —iF‘“’(m)FW(x) . (3.4.5)

By applying Euler-Lagrange equations (2.1.8) we directly get back Maxwell’s equations.

3.5 Representations of Lorentz Transformations

We've stated earlier that representations M (L) of a Lorentz group element L € SO(1,3) depend on the
spin of the field we’re operating on. For a general field we have said that the following holds:

¢*(z) = o7 (x) = MVH(L)¢" (A ), (3.5.1)
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where M (L) is the representation of L that acts on the field ¢ and A is the representation of the same
group element L that acts on 4-vectors. Think of M (L) as a function that returns the representation of
the Lorentz transformation L appropriate for the field it acts on. We’ve found via the examples above
that M (L) is:

o M(L) =114 (a trivial matrix) for scalar fields with spin s = 0.
e M(L)=A (a4 x4 matrix) for vector fields with spin s = 1.
e M(L) =" for spinor fields with spin s = 1/2.

Since we also want to describe fermions in QFT we need to find the representation M (L) for spinor
fields with spin s = 1/2. That is our motivation to study the representations of Lorentz transformations.
Representations of a group are quite a complex topic (and group theory in general is out of the scope of
this subject), but for us it will be sufficient if we think of of them as matrices M*,(L) as we have done
above.

Peskin states that it can be shown that most general nonlinear transformation laws can be built from
these linear transformations so it makes no sense to consider transformations more general than as stated
above in Equation (3.5.1). To simplify further we can forget about the change in the field argument at
transformation. With that we can write the previous equation as:

¢ — ¢ =ML)g. (3.5.2)

Since Lorentz transformations form a group we have restrictions on the form of the matrices M (L). As
said in the introduction to this section, if we consider two successive Lorentz transformations L and L’
the net result must be a new Lorentz transformation L”, which is also a group element. This gives us a
simple condition (group multiplication structure) that must be satisfied by the matrices M (L):

¢ — M(L)M(L)$=M(L")é, (3.5.3)

where we’ve marked L” = L'L. This means that the correspondence between the matrices M (L) and the
Lorentz transformation elements I must be preserved under multiplication. Mathematically this means
that the matrices M (L) form an n-dimensional representation of the Lorentz group.

3.5.1 Example: Finite-dimensional Representations for s =1/2

To find the representation M (L) for spinor fields with spin s = 1/2 we can start by considering infinites-
imal transformations. Let us for example consider a special case of a Lorentz transformation L which
corresponds to a pure spatial rotation. In this case L € SO(3) C SO(1,3) and the corresponding
representation on spin-s fields is given by:

M(L) = exp (Z z'@kJ(’“s)> , (3.5.4)
k

where J(ks) are the rotation generators of the Lorentz Group, ie. matrices that are dependent on spin.

The parameters ©F are the angles of rotation about the three spatial axes. In general the Lorentz group
also contains generators for boosts K ks , but as we’ve limited ourselves to pure rotations L € SO(3) we
do not need to think about them. Rotation generators obey the commutation relation:

l m _ ;- lmk 7k
[‘](s)’ J(s)] =1 "y - (3.5.5)
For a Dirac spinor field with spin s = 1/2 the rotation generators are:

1
Jlaz1y2) = 50’“ , (3.5.6)

where o* are the Pauli matrices. This means that the representation of a pure rotation L € SO(3) on a
spin-1/2 field is given by:
_ ©] ©|©- o

O o _,
M(s:l/?) (L) = exp (22> = 1COSs 7 — 781N TW ; (357)
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which follows from the identity (7 - o)? = 1, where 7 = ®/|@| is the unit vector in the direction of the
rotation axis, and the power series expansion of the exponential function. To clean up we can define
6 = |®| as the angle of rotation, which brings us to:

06 60-o 0

M(S:]_/Q)(L) = 1cos 5 — ’LW sin 5 . (358)

For a general element L € SO(1,3) the form of the matrices M (L) is given by:

M(L) = exp {—; wWJ(fg] : (3.5.9)
where w,,,, are the parameters of the Lorentz transformation that encode both rotation angles for spatial
components and rapidities for boosts. J(‘; l)' are now generalized generators that include both rotations
and boosts, called generalized angular momentum operators. This means that the transformation
induced by L can alternatively be obtained by the action of the infinitesimal form of the equation above.
Generalized angular momentum operators obey the following relations:

JH = q(xhd” — a¥o") =1 <x“ 82,, - x”ai#) , (3.5.10)
[J#7, JP7] = - = i (g TP 4 g"P IR 4 ghP IV 4 g7 JHP) (3.5.11)

where the second equation is the commutation relation of the angular momentum operators, which can
be better understood if we split it into the commutation relation for rotations and commutation relation

for boosts: .
J; = igijkjjk . K= Jo (3.5.12)

From this we can figure out that rotations have indices (1,2), (1,3), (2,3) and boosts have indices
(0,1), (0,2), (0,3). J* for a Dirac field with spin s = 1/2 are defined as:

LV i v 1 v
Ty = 5 0" 21 = 50", (3.5.13)

where note that Peskin denotes this as S*”. Gamma matrices obey the anti-commutation relation:
{7 7} = 20" Lnsn - (3.5.14)

Thus we’ve come to the discovery that for spin s = 1/2, in the chiral representation of the gamma
matrices (see Equation (4.1.3)), M(s—1,2)(L) is block diagonal as so:

0 #

where the blocks # are 2 x 2 matrices. The spinor field is then defined as ¢ = (¢r, ¥g)", where 17, and
g are left- and right-handed two-component Weyl/chiral spinors.

Ms=1/2)(L) = [# 0} ; (3.5.15)

Using what we’ve learned above we can now figure out the form of the matrices J*” in the case of a
vector field with spin s = 1:

()", =i(g"6 s —0"59"") ; @, f=0,1,2,3. (3.5.16)

These are 4 x 4 matrices that act on the components of a vector field V#.

4 Dirac Spinor Fields

To properly describe fermions in QFT we need to introduce a new type of field, the Dirac spinor field.
The spinor field is defined as:

= wﬂ : (4.0.1)
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where 1, and ¥ are left- and right-handed two-component Weyl/chiral spinors. This is a 4-component
complex field that transforms under Lorentz transformations as:

0i Yro i ifot 0
S0 = 1 [°, +'] = 510 —of (boost generators) , (4.0.2)
S = %[71, 7] = ie”k {UO o?k] (rotation generators) . (4.0.3)

Here o' are the Pauli matrices.

4.1 Dirac Equation and Dirac Adjoint

We have a few demands for our equations of motion:
1. The equations of motion should be Lorentz invariant.
2. Solutions of the equations of motion should have positive energy, £ = \/Im .
3. The equations of motion should be first order in time derivatives.

While the first two demands seem pretty much self-explanatory, the third demand might need additional
explanation. The reason for the third demand is that we’d like to avoid specifying boundary conditions
the way we must do for second order equations (e.g. the Klein-Gordon equation). This is because the
boundary conditions for second order equations also require the initial value of the first time derivative.
Demanding the equation to be first order in time gives us a well-defined single-time initial condition
(which means no ambiguous negative energy doubling) and hence ensures a consistent single-particle
probabilistic interpretation. With that said, let’s write down the Dirac equation.

Remember: Dirac Equation

The Dirac equation is given by

(m*‘a m1> (z) =0, (4.1.1)

oxH

where v# are the gamma/Dirac matrices that form the representation of the Lorentz group in
spinor space. In the Dirac representation the gamma matrices are given by:

1 0 ; 0 o . ; 0 1
o _ |L2x2 i ' 5_:.0.1.2.3 _ 2x2
gl [ 0 _12X2} _— [_Uz 0} TEWYYY {1%2 0 ] ; (4.1.2)
where ¢ are the Pauli matrices, i = 1,2,3 and ~° is an additional traceless matrix sometimes
used in conjunction with the others. Take note that gamma matrices are also commonly defined
in other representations, such as the Weyl (chiral) and Majorana representations. Peskin uses the
chiral representation in his chapter on spinor fields, which is given by:

o_ | 0 loxeo ;[0 o 5_.0.1.23_ |~laxa 0
7—[12X2 0 | V=g o] TYEXVIYV =0T 4,0 (4.1.3)

We’ve essentially swapped 7° and v° compared to the Dirac representation. More information on
~v* can be found in the appendix A.1.
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Lets check if our demands have been met:
(190 = m) () = (ir“(A™1)" 0, = m) A1 (A1)
= Aj2A T (7100, = m) Ayt (A a)
= Mgz (A7 A1y (A7), = m) w(A )
= Auja (077 (A7), 0, = m) (A ")

= Ay 2 (070, — m) P(A™'z)
=0.

where we took into account & = A~1z and M /5 = Ay jo. Lets check the second demand by acting on the
Dirac equation with (—iy*d, —m):

= (=" —m) (iv" 0, —m)

(7 V0,0, +m?)y

{fy 7}88 —l—m)z/J

m*) ¢

where we see that we came to the Klein-Gordon equation and with that the second demand is met.
Finally, the Dirac equation is first order in time derivatives and thus the third demand is also met.

(3
= (9

To be able to write down a Lagrangian for the Dirac equation we must first figure out how to multiply
two Dirac spinors to form a Lorentz scalar The obvious guess of ¥y does not work smce under a

Lorentz boost the previous becomes 1) A1/2A1/21/) If the boost matrix were unitary then Al/2 = A1_/2

and everything would be fine. However this is not the case as the generators for Lorentz transformations
on spin-1/2 fields (4.0.2) are not Hermitian. We can fix this by defining the Dirac adjoint as follows.

Remember: Dirac Adjoint

The Dirac adjoint defines the dual operation of a Dirac spinor. It is defined as:
¥ =y, (4.1.4)

The Dirac adjoint transforms under Lorentz transformations as:

B(Ax) = Bla)A], - (4.1.5)

and thus the product ¢n) is a Lorentz scalar.

4.2 Solutions of the Dirac Equation for Free Fermions

To obtain plane-wave solutions of the Dirac equation (detailed derivation in Peskin pg. 45) we can start
with the plane wave ansatz:

Y(x) = u(p)e™ 7, (4.2.1)

where, as we’ve said, p?> = m2. Let’s concentrate on solutions with a positive frequency, meaning p° > 0.
The column vector u(p) must obey an additional constraint that is found by plugging it into the Dirac
equation:

(v*pu —m)u(p) =0, (4.2.2)

where v# used here are in the chiral representation (4.1.3). This will naturally split the spinor
components into left-handed £; and right-handed two-component spinors £r. Let’s solve the Dirac
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equation in the rest frame as it’s the easiest, where p = pg = (m,0). The general solution can then be
found using a Lorentz boost Ay /5. In the rest frame Equation (4.2.2) becomes:

(my° — m)u(po) =m [ 1 _ﬂ u(po) =0. (4.2.3)

For this to hold u(pg) must be:

u(po) = v'm Eﬂ =Vm [g] , (4.2.4)

where £ is a two-component spinor and &5, = £z = £ in the rest frame. After a Lorentz boost, £, and &g
are no longer identical. The boost mixes left- and right-handed components in a momentum-dependent
way. We usually normalize two-component spinors as £7¢ = 1. The pre-factor of \/m has been added to
satisfy the standard relativistic normalization convention for four-component spinors:

@’ (p)u”(p) = 2mdg, . (4.2.5)

& transforms as an ordinary two-component spinor under rotations. Which means that it determines the
spin orientation of the Dirac solution in the rest frame:

1

& = o] = o= || =i (]| (spin ). (4.2.6)
L LSt o
- - - _0_

& = (1) = uy (po) =vVm 2 =m (1) (spin down) . (4.2.7)
] o 1

Notice how we were only able to choose two of the four components of u(p). This is in accordance with the
fact that we’re studying spin-1/2 particles which only have two possible physical states, up and down. We
can obtain u(p) for any other frame by performing a Lorentz boost. A boost transforms a 4-momentum

vector as: [53} _ (1+77 [(1) (1)D Kﬂ 7 (4.2.8)

where 7 is an infinitesimal parameter called the rapidity. It is the quantity that is additive for successive
boosts. For a finite n the transformation becomes:

= Ol o)) 15

__|coshn sinhn| [m

o {sinhn cosh 77] [0} (4.2.9)
__ |mcoshn

" |msinhn| °

When we apply the boost in spinor space our left- and right-handed two-component spinors mix. We can
work out that the rapidities are implicitly encoded in p° and |p|, because:

E

coshn=—, (4.2.10)
m

sinhn = Ip] . (4.2.11)
m

Thus after applying a boost to u(pg) we find (with a little work) that u(p) must be:

u(p) = [%ﬂ ; (4.2.12)
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here we’ve also taken into account that we have two possible solutions for £ thus the index s = 1,2 is
added. The Dirac adjoint of u(p) is as expected:

@ (p) EuST(p)VO — [EST\/ﬁ fST\/W] , (4.2.13)

a row vector with flipped (from ") and conjugate transposed components. If we were to convert this
result into the Dirac gamma matrix representation where:

co=p’logo+p- o, (4.2.14)
loxeo—p o, (4.2.15)

we would get:

u]SDirac(p) =V E +m |: U"é: s:| ) (4216)

E+m

which some might find easier to understand as it explicitly shows the dependence on energy and mass
and how they affect components. A similar procedure can be done for negative energy solutions where

we take the same plane wave ansatz: _
() = v(p)e™T, (4.2.17)

where we’ve put a + into the exponential rather than having pg < 0, hence this ansatz looks like an
opposite plane wave. Following an identical procedure as before we find that v(p) has to be:

s VP an’ :| —s — st 0 t = t
v = — v =v = |n® -0 —n® o, 4.2.18
(p) {_ o (p) =0 = [n""Vp T vpa] (4.2.18)
where 7 is a two-component spinor and since we have two possible solutions for 1 we’ve added the index
s =1,2. When working with expressions of this form it is useful to know the identity:
(p-o)(p-o)=p* =m". (4.2.19)
ot is defined as o* = (1, o) and o* = (1, —o), which follows from equations (4.2.14) and (4.2.15). For
completeness, in the Dirac representation v(p) becomes:

P .8
Ubirac(P) = VE +m {EJ;?“;" ] : (4.2.20)

4.3 Lagrangian, Hamiltonian and Conjugated Momenta of the Dirac Equa-
tion

After our discussion, most notably on the introduction of the Dirac adjoint, we can now write down the
Lagrangian for the Dirac equation. The Lagrangian is given by:

L(a; Outha, Yas Optha) (@) = tha (i9" 0y — m) () - (4.3.1)

If we apply the Euler-Lagrange equations (2.1.8) we quickly get the Dirac equation:

oL oL 0
- _ 9% _o—9. .0— (i _ , 4.3.2
" 00, a O g <” da m) o 432
To get the conjugated moment we use the formula as we’ve derived in the introduction. Thus we have:
oL — . .
(@) = 55000 = DainGy, = (19°9°0), i =] i (4.3.3)

and for the Dirac adjoint ), we simply have:

I, (z) = =0. (4.3.4)

0oy
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Now that we have the two previous expressions we can write down the Hamiltonian density, again just
like we’ve done in the introduction (2.1.15):

H=> Taths — L
= il dovpa — 9 (i7°00 + iy -V —m) , Py (4.3.5)
= 9T [129(=iV) +7"m] ¢
= Q/JThDd} )

where hpi(z) = i0p(z) = —ia - V + mf if we mark a = 7%, 8 = 7% and p = (—iV). hp is the
Dirac Hamiltonian that we know from one-particle quantum mechanics. We normalize the linearly
independent solutions of the Dirac equation as:

u"(p)u’(p) = 2mad"™ , (4.3.6)
v"(p)v®(p) = —2md"*, (4.3.7)
uT(p)ud (p) = 2E,0"° (4.3.8)

v”(p)vs(p) = +2E,0"° . ( )
)

The solutions u(p) and v(p) are orthogonal to each other:

however do note that the following relations are non-zero leading to another property:

u"t(p)v* (p) # 0 (4.3.12)
v (p)u’(p) # 0, (4.3.13)
u"(p)v*(—p) = v (—p)u(p) = 0. (4.3.14)

When evaluation Feynman diagrams we will often want to sum over the polarization/spin states of a
fermion. Following a derivation from Peskin pg. 48 we come to the result:

Y wi(p)at(p) =v-p+m=p+m, (4.3.15)

sz(p)ﬁs(p)zvp—m:p—m. (4.3.16)

The combination 7 - p occurs very often, so much so that Feynman introduced a new notation for it.

Remember: Feynman Slash Notation

Feynman’s slash notation is defined as:
A=A, =7"Ag+7' A1 + 77 A2 + 7% A, (4.3.17)

where A, is a covariant vector (more generally a 1-form). The signs are positive since we only
used the Einstein summation convention and not the metric. Upon using the Minkowski metric
we can see that for the corresponding contravariant components A* we have:

A=, A" = AOAD — AT AY —A2A% 4343 (4.3.18)
With that we can define p slash, or more formally the slashed 4-momentum, as:

pP= yOp® — 4ipt . (4.3.19)
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4.4 Quantization of the Dirac Field

As we’ve done for the real scalar field we now promote the classic fields to operators however the com-
mutation relations we postulate are different. The classic field ¢ (z) is given by:

() = / \/ﬁz (45w (@)e™#" g + Byv* (p)e™ b7} ) | (4.4.1)

where we are free to choose Aj, and B, as we please. The operators a; and bSI, are the annihilation
and creation operators for particles and antiparticles respectively. We have two possible choices for the
postulation of the commutation relations. The first choice is to postulate the commutation relations with
commutation relations:

[ia(:& t)v ﬁb(y» t)] = ih&abé(w - y) ’ (4'4'2)
[1[)11(137 t)’ @b(ya t)} =0, (443)
11, (z,t), My(y,t)] =0. (4.4.4)

This would seem like a reasonable choice, as it is how we quantized the real scalar field. However, this
does not work, as it leads to solutions with negative energies. The correct choice is to postulate the
commutation relations as anticommutation relations, which can be done as follows.

Remember: Commutation Relations and Field Operators of the Dirac Field

We postulate the commutation relations as anticommutation relations, which fixes the problem
of negative energies:

{wa(w’ t)v Q/J;r(yv t)} = 5ab5(m - y) ) (445)
{1/)(1(537 t)v %(y, t)} =0, (446)
{wl@.1), ¥jw.t)} =0, (4.4.7)

where we’ve chosen Ay, = Bp, = 1. The field operators 'L[)(l’) are then given by:

P(x) = / e \/ﬁ Z ( e 4 bs;r,vs(p)eip‘m> , (4.4.8)

P(x) = / gt \/ﬁ Z (b" 7 (p)e” P + as;roﬂs(p)eip'l) ) (4.4.9)

where the sum goes over s = 1,2 and the creation and annihilation operators satisfy the following
anticommutation relation:

{ab, a®l} = {b0, b°1} = (2m)*67*6(p — q) , (4.4.10)

while all other anticommutators are equal to zero. The vacuum state |0) is defined to be the state
such that the following holds:

ap|0) = by[0) = 0. (4.4.11)
With these definitions both asi, and bsL both create particles with positive energy and momentum
p. We refer to the particles created by as;f, as fermions and those created by bSL as antifermions.

4.5 Eigenstates and Eigenvalues of Operators Applied to Fermions

Now that we’ve successfully quantized the Dirac spinor field we can start to study excitations of the field
which represent fermions. What we’re looking for:

Oa*1|0) = Aoa®]|0), (4.5.1)
Ob*L10) = Xob*T|0) (4.5.2)
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where Ao and Ao are the eigenvalues of the operator O for fermions and antifermions respectively.

One-particle states:
Ip, s) = \/2Epasl,|0> , (4.5.3)
are defined so that their inner product is Lorentz invariant:
(p, rlg, s) = 2Ep(2m)°6"*5(p — q) . (4.5.4)

This implies that the operator U(A) that implements Lorentz transformations on the states must be
unitary, even though we know that for boosts A;/, is not unitary. To find the way ladder operators
transform we calculate:

3
Uy(x) U~ =U / (gﬂp 3> (a;uS(p)e*ip'w + bS;uS(p)eiP-m) Ut (4.5.5)

3 /2B, <

Equation (4.5.3) implies that the ladder operators transform as:

E
oy (4.5.6)

U(A)ayU " (A) = o

4.5.1 The Hamiltoniam Operator

We’ve now acquired everything we need to write down the Hamiltonian operator For the Dirac field.
First let’s quickly discuss the Dirac Hamiltonian hp (4.3.5) and how it works on the one-particle states
(4.5.3). Applied it gives:

hpu(p)e” P = + Epu(p)e”#* | (4.5.7)
hpv(p)e™® = —Epu(p)e™™ .

Finally the Hamiltonian operaor is given by:
i = [ dz i @hpil@) - [ do 1)
/ / \/ﬁZ( astust (p) + b v® (p)) P
x / \/ﬁ Z (+Batiu (@) + (~Eb T 0" () €'
. / o Z (b Bp — b30°} )
_ / (;gBE,,Z;: (afT s bis - (271')36(0)) : (4.5.9)

The last term implies that the vacuum state has —oo energy. We sweep that under the rug by renormal-
izing the energy scale. We will discuss this further when we talk about the operator of electric charge. 1
think it deserves a box.

Remember: Hamiltonian Operator of the Dirac Field

The Hamiltonian operator for the Dirac field is given by:

= [ b5 (v vl (45,10

Trying out the fruits of our labor let’s consider a one-particle anti-particle state:
avhj0y = b*T 10y + [H, b*1]10)
= Eob*1|0) + Epb°T|0) (4.5.11)
=>E=FE+Ep,
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where the commutator here is calculated as:

[, 6°5) = (0¥ ba Dbt 4+ 67 Lo bty — e T e + b b )
—a ; o ,ZfT 67 b bt — 0 L a Lt — (1) b et

77777777 (4.5.12)
N S
=V p PV p T 0 p0" pr
st s’ st
- b p/ {bp/, b }
which is nonzero thus meaning that the additional £, factor above is explained. We see that energy is well

defined against the energy of the vacuum state. What about a multi-particle state of two noninteracting
fermions? We have:

aSlLl SQT |O> E=Fy +EP1 +EP

(4.5.13)
however ST a®l pl0) = ST a®l pl0) =0.

The same does not hold when it comes to combinations of particles and antiparticles, what’s more they
can be in the state with the same s and p meaning;:

a*TpeT10y = —b*TaT]0) £ 0. (4.5.14)

4.5.2 The Momentum Operator

Derivation of the momentum operator is done using the momentum density (2.4) and in a similar fashion
to what we’ve done for the real scalar field (2.6.1). The momentum operator for the Dirac field is given
as follows.

Remember: Momentum Operator of the Dirac Field

The momentum operator for the Dirac field is given by:
d T d p sT a® st 1s
x Yi(—iV)y = E Zp p 000 (4.5.15)

We’ve said this before but here we can explicitly see that aSI, and bS; both create particles with

positive energy and momentum p. Fermions and antifermions respectively. Eigenvalues of the
momentum operator are the momentum of the particles, like so:

pab|0) = pal|0) , (4.5.16)
PbL[0) = pb}|0) . (4.5.17)

4.5.3 The Electric Charge Operator

The electric charge operator can be found by using the Noether current for the U(1) symmetry of the
Dirac field. In practice this can be done by considering a global phase transformation of the Dirac field
and applying Noether’s theorem (2.3). The transformation in question is:

Y(x) — () for a = const. ,h(x) — e () . (4.5.18)
The Noether current is given by:

oL oL
= A _ A — JH 4.5.19
= B0, Y+ 90,7 P — ( )

where we have an additional term due to our field being complex. J# = 0 since the Lagrangian is invariant
under global phase transformations. Remember our Lagrangian is:

L= ’lEa(i’}/uaﬂ — m)ab¢b 5 (4520)
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from which we get that Ay = —it. In the first order of o we can express the transformation as:
v = Y =1 +ia). (4.5.21)

Looking back to the Noether current (4.5.19) and our Lagrangian we can see that the second term is also
0 as we have no derivatives d,,1. Thus all that is left is to calculate the first term:

oL —
—— =i (V) ap - 4.5.22
ooy = 0" e (45.22)
From which we can simply put together the Noether current:
3" = Yai (" )b (ithp) - (4.5.23)

Due to the fact that this current is conserved we can multiply it by an arbitrary constant. From this we
get the continuity equation for electrical charge:

Jh = ey, (4.5.24)
v =0, (4.5.25)

where e is the electric charge of the fermion and ji,; = (per., jum). The electric charge of the fermion
is equal to —egp in the case of the electron field, but can also be 2/3 ey or —1/3 ¢q for the quark fields.
Anyways the electric charge can be found from the Oth component of the current. As per Noether’s
theorem:

Qel. / d3zely ep = / d3per.(2) but with operators also

= (4.5.26)

dp ST a® s 15t
/ 32 p 000

We’ve come to an important result which arguably deserves its own box.

Remember: Electric Charge Operator of the Dirac Field

The electric charge operator for the Dirac field is given by:

Qo = / dp 32 a*la®p — 0°Tb, + (2m)%5(0)) . (4.5.27)

The continuity equation for electrical charge is given by the conserved Noether current:

Jonm = ey, (4.5.28)
Bl =0. (4.5.29)

Eigenvalues of the electric charge operator are the electric charges of the particles, like so:

Qe1.a|0) = [Qer., al]|0) = eal|0), (4.5.30)
Qa.b}0) = [Qer., b}]]0) = —eb}|0) (4.5.31)

where we’ve ignored the charge of the vacuum state. More on this right below.

\

Charge of the Vacuum State: The vacuum state has a charge of oo which does not really make
sense. This is also a problem that we sweep under the rug later on. We can see that the vacuum state
has a charge of co by using the anticommutation relations of the creation and annihilation operators for
antifermions to get them into their normal ordered form:

c(@haty +b7pb% ) = (@] at, — b hb%, + (27)%6(0)) (4.5.32)
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The implication that the vacuum state has a charge of co is made by the third term where we have the
delta function §(0) which is infinite.

What about Majorana fermions? We’ve yet to discuss Majorana fermions. Their special property
is that they are their own antiparticles. This means that the creation and annihilation operators are
the same for Majorana particles and antiparticles. If we remember the field operators for the Dirac field
(4.4), they state something along the lines of:

dulet) = [ (gt )7+ b)) (4.5.33)

where we’ve used the same creation and annihilation operators for particles and antiparticles. We're we
to calculate the value of the electric charge operator for Majorana fermions we would get:

Qe = 6/1/3}4%1 =0, (4.5.34)
which is an interesting property of Majorana fermions. They have no electric charge.

4.5.4 Interpretation of Vacuum Charge and Energy for the Electron Field

As we’ve seen in our journey through the quantization of the Dirac field, the vacuum state has a charge
of —oo and an energy of —oo, where we've taken into account that for electrons e = —ey. These are
the results of the anticommutation relations of the creation and annihilation operators for antifermions.
Dirac interpreted this result as what is known as the Dirac sea. His idea was that the vacuum state is

the sea of electrons with negative energy. This sea would naturally have Ey = —oo and Qe = —00.
It is interesting to note that Efr™ion = —Escalar would hold if the masses of the fermions and scalars

were equal. We know in nature however that they are not. This gives rise to supersymmetric theories
where every fermion has a scalar supersymmetric partner and vice versa. The electron e~ has a scalar
partner the selectron é~ and the photon 7 has a fermionic partner the photino 4. These are currently
only theoretical constructs though and have yet to be observed experimentally.

4.5.5 The Angular Momentum Operator

In the same fashion as we’ve derived the operator of the electrical charge we can derive the operator of
the angular momentum. This time the transformation we’re going to consider is a rotation of the Dirac
field. We will get operator of the angular momentum from the Noether current of the rotation symmetry.
The transformation in question is:

Y= Y =AM e) = (1= i0J o)) 0 (x + 0y, y — 0z, 2) = ¢ + A, (4.5.35)

where A /5 is the representation of the Lorentz group for spin 1/2 particles, which we’ve discussed before
(3). The matrix J(112/2) is the generator of rotations in the z — y plane, given as such:

1o 0 1
J(112/2) =3 [0 03] = 523, (4.5.36)

meaning that A;/; can be written as:

7

~ v 3
A1/2 ~1-— OJMVJ(Hl/z) =1- 592 5 (4537)
since w2 = —wg; = 6 and all other off diagonal components of w,,,, are 0. A~z gives the rotation of the
coordinates:
1 6 0f |z T+ Oy
Altz=|-0 1 0| |y|=|y—0x]| . (4.5.38)
0O 0 1 z z
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Using a Taylor expansion we can find Ay from the transformation (4.5.35):
U+ OAD =1+ 6 —%23¢+8x¢-y—ayw-x (4.5.39)

We've already evaluated the Noether current for spinors in Equation ((4.5.23)) is given by:

oL
00,1

j* = Aty = iy Ay (4.5.40)

And as expected the operator of the angular momentum is given by the first component of the Noether

current:
Q= / &z (x)
= /d?’x Ui (x) [;E?’ + (& x (—iV))?’} () (4.5.41)
= Jo= [@idia) |34 @ x ()P da)

where note that the power 3 at the cross product actually denotes the z component of the cross product.
We’ve again come to an important result which deserves its own box. Let’s write down the operator for
any direction of the angular momentum.

Remember: Angular Momentum Operator of the Dirac Field

The total angular momentum operator for the Dirac field is given by:

J:SHﬁ:/d%w[ ¥ 4 (& x (=i ))}1/37 (4.5.42)
where the matrix vector X is given by:
i O'i O
w7 . o)

In the case of the z component of the angular momentum we can write states with well-defined
angular like so:

A a= T ]' as= T

J.a*=15|0) = +50 150), (4.5.44)
A a= T 1 as= T

J,a*=24]0) = —50 2000y, (4.5.45)

1

J.o=1110) = b 1oy, (4.5.46)
7 g s=2ft 1 s=2T
Jb"20]0) = +5b"7%5/0) - (4.5.47)

From here we see that fermions really do correspond to particles with spin 1/2. The operator of
the total angular momentum for any direction is given by the sum of the spin operator and the
orbital angular momentum operator. The value of S is related to J, in the particles rest frame.

4.5.6 z Component of Spin and Helicity for Particles with Momentum

In the event that we have a particle with p # 0 the state of the particle is not an eigenstate of the z
component of the angular momentum, meaning;:

S.a=1T 10y ¢ a*=1T 0y | (4.5.48)
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since Ysu®(p) # u®(p). As we’ve said in the previous section, spin is related to the z component of
the angular momentum in the particles rest frame. If we consider commutators between these various
operators and the Hamiltonian we find that the Spin operator or the Orbital angular momentum operator
do not commute with the Hamiltonian, meaning they are not good quantum numbers.

(S, H] #0+ L, H]. (4.5.49)

However combining them together to get the total angular momentum operator we find that it does
commute with the Hamiltonian and is thus a good quantum number. We’ve already done so in the box
above, without explicitly stating the reason for doing so. Once again for posterity:

Wy

J =

i (4.5.50)
[J, H =0.

(4.5.51)
We can however find another good quantum number if we consider the projection of spin onto the

direction of momentum. This is known as Helicity. Truth be told it is a often neglected operator and
thus deserves a box of its own.

Remember: Helicity Operator for Particles with Momentum

The helicity operator for particles with momentum is given by:

joSP (4.5.52)
Ipl
The eigenvalues of the helicity operator are the helicities of the particles, like so:
ha*=1 10y = —|—%a5:1;\0> . ha*=2lj0) = —%aS:2I,|O) . (4.5.53)
The helicity operator commutes with the Hamiltonian:
[h, H] =0, (4.5.54)

thus making it a good quantum number. The helicity of a particle is right-handed if spin is
aligned with the direction of momentum, thus making helicity positive and left-handed if it
is opposite to the direction of momentum, thus making it negative. Do note that the helicity
operator is not Lorentz invariant. It can change sign under Lorentz boosts.

4.5.7 Causality for Operators of the Dirac Field

This is here just as a short reminder as it is in general pretty important. Anyways the point is that
for two space-like seperated points of spacetime the commutator of the various operators of the Dirac
field we’ve listed here must be zero. Operators at space-like seperated points must commute. This is a
consequence of the theory being Lorentz invariant. For example for a short excercise we can consider the
following:

[@1@), @2} =0for (z —y)> <0,

; I (4.5.55)
where Oy (z) = ¥l (2)Th 2y (2) .
Our operators here have a pair of fields. We can expand the commutator to get:
[01(,0) Oa(y, 0)] = ¥} (2) a0 ()L () Veqt0a(y) — VL WINZava(y)dl () vaptho ()
— ()0 ()7 ()22 a(y) — 2. term in similar fashion (1556)

= Yiaivt by — 2. term
=0.
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4.6 Fermionic Propagator
Calculating propagation amplitudes for the Dirac field should now be a piece of cake. We're interested
in the fermionic propagator which is given by:

(O[a () ()|0)  fora® >y°,
— {0 (y)vha()]0)  fora® <y,

where as we’ve now seen a couple of times 7T is the time ordering operator. We can quickly evaluate the
two cases as follows:

Ap(@ = y)ay = (0T {ta (@) (y) }0) = { (4.6.1)

Fo 1 : (4.6.2)
= (Zam + m)ab/ (27.[_?3 ﬁe—lp‘(:v—y)
3
010 = [ 5555 X el p)e
b , (4.6.3)
‘ Pp 1,
= —(id, — m)ab/ (2;;3 Ee (z—v)

where @ = v*0,. Just as we've done for the scalar field we can now construct the propagator as the
retarded (trust me it’s in Peskin pg. 62) Green’s function of the Dirac equation, while taking into
account the boundary conditions:

AR (x —y) = 0" — y*){0[{va(@), ¥s(y)}10), (4.6.4)

where we've insulted the Green’s function by calling it retarded since it contains the Heaviside step
function 8(x® — y°). If we act on the previous function with the Dirac equation we quickly verify that it
is indeed the Green’s function:

(i, —m)Ap(x —y) = i6™ (z — y) - Laxa . (4.6.5)

The Green’s function of the Dirac equation can also be found via a Fourier transform as:

4
50 =) = [ Sty mpe I A(p), (46.6)

where Ap(p) is: . ‘
Brlo) = - - ;ffj:g . (4.6.7)

Yet again we’ve come to important knowledge which deserves a box.

Remember: Fermionic Propagator

The fermionic propagator for the Dirac field is given by the Green’s function of the Dirac equation.
Taking into account Feynman boundary conditions we get:

d'p i(p+m)
2m)4 p?2 — m? + ie

Ar(e =) = OT{pEFEWI0 = [ eV (168)
where we’ve used the Feynman prescription where the poles of the propagator are slighly
displaced above and below the real axis p° = +(F, — ic). We've used the same prescription
for the propagator of the scalar field (2.11.3). When drawing Feynman diagrams we draw the
fermionic propagator as a straight line with an arrow pointing in the direction of the flow of
positive charge, like so:

-y (4.6.9)
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4.7 Majorana Fermions in Contrast to Dirac Fermions

We've already mentioned Majorana fermions when discussing the electric charge operator of the Dirac
field. Majorana fermions are their own antiparticle. As we’ve seen (4.5.34) they cannot hold charge since
their particle, antiparticle ladder operators are the same. This means that exications of Majorana fields
are always neutral particles. The Majorana field operator is given by:

Dot t) = / (@t (p)e T + athu (p)e? ) | (4.7.1)

For example it is unknown whether the neutrino is a Dirac or a Majorana fermion. We could identify
this through observing beta decays. A process that is known to occur is the double beta decay where
two neutrons decay into two protons, two electrons and two electron antineutrinos. This process can
occur for both Dirac and Majorana neutrinos, however there exists a theoretical process known as the
neutrino-less double beta decay where the two antineutrinos annihilate each other which would only be
possible if the neutrino is a Majorana fermion. This process has yet to be observed experimentally.

4.8 Lepton Number Conservation

Another conserved quantity that applies to leptons is the lepton number, defined as:
L=L.+L,+L,. (4.8.1)

For example the lepton number of the electron and electron neutrino is L. = 1, while the lepton number
of the positron and electron antineutrino is L. = —1 and so on for the other leptons. The lepton number
is conserved in all interactions. We know for example that L. is not conserved due to neutrino oscilla-
tions, however the total lepton number is conserved. This does not hold true if neutrinos are Majorana
fermions. Another reason why the neutrino-less double beta decay has yet to be observed.

4.8.1 Neutrino Mass

The discovery of neutrino oscillations has shown that neutrinos have mass. This is a problem for the
Standard Model where neutrinos are massless. This can be corrected by introducing right-handed neu-
trinos, which we do not know how to get directly from interactions. In theory it is possible to create a
right-handed neutrino essentially by transposition:

brm = %(1 — )Y, (4.8.2)
YR = %(1 +35)0, PR = wTLM : (4.8.3)

But this can only be done if the neutrino is a Majorana fermion.

5 Complex Scalar Fields

Complex scalar fields describe spinless charged scalar particles. The main difference between complex
scalar fields and real scalar fields is that for complex scalar fields q@ #* &f. Examples of charged spinless
particles are mesons such as pions, which if we’re more specific are pseudoscalars as they change sign
under parity transformations, while real scalars do not.
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Remember: Complex Scalar Fields

The Lagrangian for a complex scalar field is:
L =0,00"¢" —m2pp! . (5.0.1)

The complex scalar field operator is defined as:

- d 1 . ) R
oz, t) = / (2:)3 Nei (ape™ P + bLe™®) # ¢l (,t) . (5.0.2)
The commutation relations are:
[ap, af] = (27)*(p - q) (5.0.3)
[d(,1), T(y,t)] =id(x —y). (5.0.4)

With these we can derive the various operators.

\

If we have a quick look at the causality for complex scalar fields, considering two operators O, and O,
in two space-like separated points, we have:

[@1(w1,0), @2(;@,0)] =0 for z#vy. (5.0.5)

We've already seen this in the commutation relations we postulated for complex scalars (for * # y,
[¢(x,t), I(y,t)] = 0) but how about the commutation relations for the fields themselves? We have:

- - d dp’ i i’
o) 600 = [ 585 [ ot e (o )+ 0 0)
=0
however (5.0.6)
= (0lo(,0)¢' (y,0)[0) — (0]¢' (3, 0)¢(a, 0)[0)

particle antiparticle

“—z—p>—y +z—a—y U

We can see that even the final line is zero if interpret it in terms of Feynman diagrams as the two
propagators cancel each other out. Thus for this commutator to be zero and for causality to be preserved
antiparticles must also exist. This must hold for every & # y. In the case of real scalar fields these
demands are trivially satisfied via the postulated commutation relations.

6 Interactions Between Fields & Feynman Diagrams

We'd like to understand how fields interact with each other. We’ll introduce that fields interact in the
same point in spacetime (x,t). We’ll also introduce the concept of a Feynman diagram. The figure (6.0.1)
shows a process that we’d like to understand:

Hine = et (2)y"P(2)Au(z) | e (6.0.1)
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6.1 Principles of Introducing Interactions to QFT
6.1.1 Principle 1: Locality and Causality

Interactions are local in spacetime. This means that the interaction Hamiltonian is a function of the
fields at the same point in spacetime. So the following process would be allowed:

x
Lint(z) o ¢* (), (6.1.1)
But the following process would be forbidden:
T Y
Ling(,y) o< ¢*(2)6°(y) , (6.1.2)

6.1.2 Principle 2: Commutation Relations
The evolution of a field without interactions is relatively easy to calculate:
Po(wm, 1) = Mo (a, 0)e ot

In the case of interactions, the evolution of the field is more complicated:
¢A>(:c,t) = Mg, 0)e "M
— eiMimte=iHot g (g ()eiMot g iHint (6.1.4)
=U""(t,0)pint(z,0)U(t,0) ,

where U(t,0) is the time evolution operator from ¢ = 0 to ¢. Just in case, we should verify that our
postulated commutation relations hold even for fields evolved in time:

[6(2,1), T(y,1)] = [U bine(z,0)U, U™ Thing (3, 0)U]
= U [Gine (2, 0), i (y,0)]U
=U"1(i6°(z —y))U
=0.

(6.1.5)

6.1.3 Principle 3: Lorentz Invariance

This principle is essentially the basis of a lot of our work so far. We've been working with Lorentz
invariant Lagrangians and Hamiltonians and we’ll demand that our interactions are Lorentz invariant as

well.
L(x) v LA ). (6.1.6)

6.1.4 Principle 4: Renormalizability

Later on, we’ll discuss renormalization in more detail. For now, we’ll just say that we want our theory
to be renormalizable. This means that we want to be able to absorb divergences into a redefinition of
the parameters of the theory. For example, Quantum Electrodynamics (QED) has only two parameters
m and e. In general our theory is not renormalizable if the units of the coupling constant are raised to a
negative power, like so:

g =eVY, N <0, non-renormalizable. (6.1.7)
If N >0, then the theory might be renormalizable. For completness:
[g)=eVY, N >0, possibly renormalizable . (6.1.8)
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6.1.5 Principle 5: Symmetries

The previous four principles have already severly constrained our theory, but even these constraints leave
too many possibilities. This is why we introduce symmetries as additional constraints on our theories.
Our theories can have global symmetries or local/gauge symmetries. We’ll discuss this in more detail
later. For example the full standard model has only 3 symmetries added:

Standard Model Symmetries — SU(3) x SU(2) x U(1). (6.1.9)

Fun Fact: Translations of the term Gauge

In our native language Slovenian, the term gauge is translated to umeritev, meaning gauge symme-
tries are translated to umeritvene simetrije. Our professor Sasa did mention that when attending
a conference in Croatia the term used in Croatian was basdarna teorija. This has been verified
with Croatian colleagues.

Examples of Hine and Line among ¢, 1, A,: Our Lagrangian could be made up of a free part and an

interaction part:
L=Ly+ Lin - (6.1.10)

Calculating the Hamiltonian, we find:

H =11¢ — Lins — Lo = (Tlp — Lo) — Ling = Ho + Hint »

(6.1.11)
= Hint = _Lint .

Mass Dimensions of Fields: As an exercise we can try to calculate the mass dimension of the fields
we’ve been working with. So for our 4-momentum p* = (E, p), we have:

[p] = [E] = eV.. (6.1.12)

We know that for our Hamiltonian and Hamiltonian Density, we have:

H= /d%% = [H]=eV, (6.1.13)

[H] = =eV? = [L]=eVi. (6.1.14)

o .0
L= @¢8Tc#¢ +...,
[£] = eV* = [eV][g]leV][¢] (6.1.15)
= [¢] =eV
For spinor fields:
.0
KZQ/JZ’V‘ ww"r 9
[£] = eV* = [lin"[eV][¢], (6.1.16)
=[] =eV*2.
And for vector fields:
L= —i (0,A, — 0, A,) (OHA” — Q¥ AM) + ...,
(€] = V" = (leV][4,] — [eVI[A,])° . (6.1.17)
= [4,] =¢eV.
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6.2 Interactions of Scalar Fields
Our interaction Lagrangian for scalar fields has the form:
Lint = Apo™(z) . (6.2.1)

For our theory to be renormalizable, we need [A,] = eV*™". This means that n = 3,4 are allowed.
Taking ¢ = ¢!, we have the following Feynman diagram for n = 3:

Line < ¢3(2), (6.2.2)

which is generally not present if additional symmetries are imposed (like ¢ — —¢). For n = 4, we have
the following Feynman diagram:

Lins o< ¢*(x) , (6.2.3)

which represents the interaction of the Higgs field in nature. In general this interaction would have a
Hamiltonian of the form:

Hing () = %¢4(JU) , (6.2.4)

where we’ve chosen the factor of 4! for convenience.

6.3 Interactions of Fermions and Scalars

We can now construct the interaction Lagrangian between fermions and scalars. Notice that the interac-
tion Lagrangian has two fermions and one scalar. It has the form:

Ling = g ()1 (x)p() - (6.3.1)

Taking a look at the coupling constant g, we have [eV]* = [g][eV]*/?[eV]3/2[eV] = [g] = eV. There is no
other possible option for the coupling constant. The Feynman diagram for this interaction is:

p n
>7L< t (6.3.2)
n p

6.3.1 Example: Interaction between Higgs Field and Fermions

The interaction Lagrangian between the Higgs field and fermions is:

Ling = —gy - v¢sibp — grpor H (6.3.3)

where the coupling is my = g¢-v and v = 246 GeV is the non-zero vacuum expectation value of the Higgs
field that spans the entire universe. This coupling is responsible for the mass of the fermions. We see
that the coupling constant gy is proportional to the mass of the fermion my.
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6.4 Interactions of Fermions and Vector Fields

When considering interactions between fermions and vector fields, we must consider that we have an
additional requirement which is known as local gauge invariance. These are arbitrary local transfor-
mations of the fields which can vary from point to point, for example a phase transformation in the case
of fermionic fields or an addition of a gradient to the EM vector potential which leaves the fields B and
FE unchanged. The two transformations we mentioned can be mathematically expressed as:

V(x) —  Y(x)=e@y(x), (6.4.1)
Az) — A;(x)zAM(x)—%aua@), (6.4.2)

where the transformations are global if o = const. and local if @ = a(z). The Lagrangian for the
interaction between fermions and vector fields is:

Hint = —Line = ePy" A, = jhv AL, (6.4.3)
where one can quickly see that the current jf,, is Lorentz invariant:
gl o AP G - (6.4.4)
Taking a look at the units of the coupling constant e we see we have:
[Hin] = [V = [elleVI*/2[eVI*/2[eV) 645
= [e]=eV°,

. . 2
which holds true if we remember the fine structure constant o = Z—W ~ ﬁ

6.4.1 Example: Quantum Electrodynamics (QED)

The gauge transformations we’ve mentioned above are actually the ones postulated by QED. We will go
into the details of QED later on. For completeness, lets list the transformations again:

d(x) = () = Dya), (6.4.6)
Ay(z) —  A(z)=Au(z) - éaﬂa(x) , (6.4.7)
where FE—-FE, B—B.

As a fun exercise we can calculate the QED Lagrangian from this. We have:

L =iy Dy —m)p, (6.4.8)
D, =0, +ieA,, (6.4.9)
where D,, is known as the covariant derivative. The covariant derivative is introduced to ensure that
the Lagrangian is invariant under the gauge transformations. Now we must prove that D, — em(‘”)Duw
under the gauge transformation. We have:
Dytp = (9 + ieAy, — i(Opa () (e ()
= zb(a:)em(z)i@uoz(x) + eia(m)alﬂ/}(x) - ieAMem(x)U)(x)

o ) (6.4.10)
= em(l)(ﬁu +ieA, ) (x)
= eia(I)DH’l[}(I) .
We must also check the gauge invariance under the second transformation:
L — wTeia(a:),yO(Z-,Y;Leia(w)D#w . meia(z)w)
= (iD,p — my)) (6.4.11)
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and thus we come to the QED Lagrangian (some things here are hat pulled though, more later):

. —
Lqep = YD, —m) — ZFH F.. . (6.4.12)

Using similar logic we could find the Quantum Chromodynamics (QCD) Lagrangian if we also took
additional symmetries due to color charge into account.

6.5 Interactions of Scalar and Vector Fields

The interaction Lagrangian between scalar and vector fields is again obtained by considering additional
gauge symmetries. The symmetries are the same as in the case of fermions and vector fields, where we
have a local phase transformation for the scalar field and a local gauge transformation for the vector field,
mathematically expressed as:

1
g
o(z) = (@) =e"o()

where I'd like to remind the reader that a general vector field can be marked as V#(x). The desired
invariance is achieved by the following replacement:

8,6 — Dud= (9, +1igV,) (6.5.3)

Viz) — V*ax)=VHx) - 0"a(x), (6.5.1)

(6.5.2)

This means that our free Lagrangian for the scalar field changes to:
Lo 3,601 =  D,dDMel = (8,0 + igV,$) ("o — igV*Tol), (6.5.4)

otherwise the Lagrangian would not be invariant under the gauge transformations. This makes our free
Lagrangian:
Lo = (00 +1gV,u0)(9"9" — igV* ") — m?¢le. (6.5.5)

Again studying the units of the coupling constant § to give our theory a chance of being renormalizable,
we have two options, where in both cases [§] = eV":

Ling = gVu¢8#¢T )

An (6.5.6)

which represents for example, the interaction of the 7+ meson with the electromagnetic field. The second

option is:
Ling = GV, V" 90", ;ﬁx:: (6.5.7)

which for example represents the interaction of the W+ and W~ bosons with the Higgs field.

Note: There are derivatives in both the above interaction Lagrangians which means that commutation
relations are ensured by other means.

6.6 Summary of Interactions

What we’ve seen so far is essentially the Standard Model of interactions between fundamental fields.
All interactions between them are listed above. It makes sense to emphasize that in regular Quantum
Mechanics the choice of potential V() which is used to describe the interaction between particles is prac-
tically arbitrary. In Quantum Field Theory interactions are constrained by the various principles we’ve
discussed in the previous sections (6.1). Unfortunately none of the interactions in QFT are analytically
solvable in more than 2D spacetime.
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6.6.1 Example: Is the Four-Fermion Fermi Interaction Renormalizable?

Let’s consider the following interaction Lagrangian:

o G Py
F
Ling = Griny" (1 — v5)2t37, (1 — v5) s (6.6.1)
U1 P3

where G is the Fermi coupling constant and I'd like to remind the reader that we’ve defined the ~
matrices when discussing the Dirac equation (4.1.2). If we check the units of the coupling constant G g
we have:

[Line] = [GF([eV]*/?)

= [GF] — [ev]4f6 _ ev—2 ) (662)

Since the coupling constant has units raised to a negative power, the theory is non-renormalizable. Indeed
this process does not correspond to any fundamental interactions, however we can think of it as a low-
energy effective theory where the momentum of incoming particles is much smaller than m%v z- The
correct interaction is mediated by the W and Z vector bosons and has an interaction Lagrangian of the
form:

o Py

gw
Ling o< gwihin* (1 = 75) 12 W, (6.6.3)

() P3

where the interaction Lagrangian stated above is the contribution of a single vertex (noted by the dot).
The process illustrated by the Feynman diagram above is already a full diagram, meaning we’d need to
take into account all the vertices, propagators etc. We’ll get to this a little later. Taking a look at the
units of the coupling constant gy we now have:

[Line] = [gw]([eV]*?)?[eV]

s . (6.6.4)
= [gw] = [eV]* * =eV°.

This means that the theory is renormalizable.

Note: The notation we used so far for the interaction Lagrangians and Hamiltonians is the corrected
version of what we used in lectures. Prof. SaSa originally mentioned that what was once denoted by H;
is now denoted by Li,; and the same for Lagrangians. This is the notation we’ve used so far, however I
wanted to add a note on this if anyone were to look at any handwritten notes from our lectures. Moving
forward from now H; and L£; will denote something related but slightly different.

7 Correlation Functions C

7.1 Motivation for Computing Correlation Functions

The motivation for computing correlation functions will come naturally once we see that these functions
are where all the information about the physics of the theory is encoded. Here are two examples of
correlation functions:

Co = (Ql¢(x1)d(x2)[2) , .
Cy = (Qp(x1)T(22) (23) T (24)[Q) (7.1.2)

—~
=
—

47



where we've denoted |2) as the true vacuum of the full Hamiltonian. Analogous to the vacuum
state |0) for a free Hamiltonian. Both represent ground states. Friendly reminder that our fields now
evolve with the full Hamiltonian, for example:

p(x,t) = eTHE) (g tg)e (o) (7.1.3)

where it makes sense to mind that ¢(x) is now a complicated object that evolves with a Hamiltonian
that includes interactions H = Hy + Hi,. Let’s have a quick look at what is possible to compute with
correlation functions.

7.1.1 Calculating Eigenenergies F, from C
Consider the following correlation function:

C(t) = (Q]0(0,t)0(0,0)|Q) (7.1.4)
where O is some operator that annihilates a system with the desired quantum numbers. For example:

o O = ¢(x) annihilates a scalar particle.

O = pe(x)TH ), () annihilates positronium ete™ with J? =17,

0= YuY5tq annihilates a pion 7.

0= Py, [wufipd] annihilates a proton p.

All the previous examples annihilate what is written next to them but also other states with the same
quantum numbers. We can expand the correlation function by evolving the first operator in time and
then writing it in terms of eigenstates of the Hamiltonian:

O(t) = (e 0(0,0)e ™ " n)(n|O7(0,0)|2)
=D (Q]0(0,0)[n)e~ """ (n]O(0,0)[2) (7.1.5)
_ ZAne—iEnt ,

where H|n) = E,|n) are the eigenstates and eigenenergies and that H|) = 0. From this we see that if
the correlation function is computed as a function of time, one can determine the eigenenergies F,,.

In general C' allows the computation of correlations of various observables at different locations or times.

7.1.2 Calculating Cross Sections from C'

We can calculate the scattering matrix S, also known as the S-matrix by computing a function of the

form:
\®\pl p%
(p1, p2le ™M |ky, k2) . (7.1.6)

PN

where |k1, ko) are the initial states at time t - —oco = —T and |p1,p2) are the final states at time
t — oo = T. The function above is correlated to C after being expressed in terms of fields. Later we will
see a rigorous relation between the S-matrix and correlation functions when we discuss the LSZ reduction
formula.
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7.1.3 Reminder: Interaction Picture

At this point I think it makes sense to remind the reader that we want to express correlation functions
in terms of fields in the interaction picture. This picture is where both the fields and operators evolve
with the free Hamiltonian Hy. So just as an example:

pr(t) = et Hol=0) g (g )= Holimto) (7.1.7)
[91(1)) = ettt |yg (1))
= etHo(t=to) g=iH (t=t0) |y,  (14)) (7.1.8)

= U(t, to)|v1(to)) ,

where |1g(t)) is the state in the Schrodinger picture, |¢;(¢)) is the state in the interaction picture and
U(t,to) is the time evolution operator in the interaction picture. For further reading I direct the reader
to the introduction (1.6.3).

7.2 Perturbation Expansion of Correlation Functions

For the purpose of studying interacting fields let us rederive a time-dependent perturbation theory in a
form that is convenient for our purposes. We’ll start by trying to calculate the two-point correlation
function, also known as the two-point Green’s function in ¢* theory. The two-point correlation
function is defined as:

(QIT{d(x)o(y)}|) , (72.1)
The correlation function can be interpreted physically as the amplitude for propagation of a particle or
excitation between the two points x and y. In free field theory it is simply the Feynman propagator:
dip emir(@=y)

2m)4p? —m2 +ie

QAT{6@0w} Yy, = Drle—1) = [ ¢ (722)
We’d like to know how this expression changes in the interacting theory. We can write the full Hamiltonian
of the ¢* theory as:
A
H= HO + Hint = HKlein-Gordon + /d?%'m 4(:[:) . (723)
We want to express the two-point correlation function as a power series in A, which will allow us to do
perturbation theory. As a start the interaction Hamiltonian enters in two places. First in the definition
of the Heisenberg field: 4 .
p(z) = e p(x)eHE (7.2.4)

and second in the definition of the new ground state |Q2). We’d like to express both of these in terms
of free fields and the free theory vacuum, since these are quantities that we know how to manipulate.
Starting of with the Heisenberg field, for any fixed time ¢ty we can expand the field in terms of ladder
operators:

d3 1 ; ;
o(x,tg) = / ii(ape’p'w + a;eﬂp'w) , (7.2.5)

(21)® \/2E,

Then to obtain ¢(x,t) for t # to we we switch to the Heisenberg picture by evolving the field with the
full Hamiltonian: ‘ 4
o(x,t) = e HE) gz 1y )e tHEt0) (7.2.6)

In the special case that A = 0 the previous expression simplifies to:

¢(m,t)‘H = tiHo(t=t0) g fo)e~Ho(t—t0) = o (1) . (7.2.7)

When A is small the previous expression will still give us the main contribution to the field, thus it makes
sense to give this expression a name, the interaction picture field ¢;(x,t). Explicitly stated:

d? 1 , _
or(x,t) = / P (ape®® + aLeﬂp'm) (7.2.8)

(2m)3 \/2F,
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Now to express the full field in the Heisenberg picture we use the time evolution operator U(t, ty), as was
hinted in the previous section:

U(t, tg) = eTiHolt=to) g=iH (t=to) (7.2.9)
p(x,t) = Ut (t, to)dr (e, )U(t, to) . (7.2.10)

Peskin mentions that the operator U(t,%y) is sometimes known as the interaction picture propagator.
We'd like to express this operator in terms of just the interaction picture field. This is done by solving
the Schrodinger equation for U(t, tg), where the initial conditions are U(tg, tg) = 1:

0
ZU(t,to) = eTiHo(t— to)(H Hp)e —iH (t—to)

at
_ _+iHo(t—t —iH(t—t
etiHo( 0)(Hint>e (t—to) (7.2.11)
— e+’iHo(t*t0) (Hint)efiH(tfto)eﬁdblHo(t*to)efiH(tfto)
= H;()U(t,to) ,
where the interaction Hamiltonian written in the interaction picture is:
Hi(t) = etiHolt=to) g o—iHo(t—t0) — /d3x 1 (x,t) . (7.2.12)

The solution to the previous equation can be expressed as a power series in A:

Ul(t,tg) =1+ (—1) /t dtlH](t1)+(i)2/t dt; /1t1 dtoHy(t1)Hy(te)+
fo fo fo (7.2.13)

t t1 to
—2)3/ dtl / dtz / dtgH[(tl)H](tg)H](tg) +
to to to

Note that the various factors of H; stand in time order. Using the time ordering operator 7 we can
simplify the expression. For a general term in the series we have:

t t1 tn—1 1 t
/ dtl/ dtg.../ dth[(tl)HI(t2)...HI(tn) = a/ dtl...dtnT{H](tl)H](tQ)...H[(tn)} .
to to to T Jito

(7.2.14)
If we write the first couple of terms we will see that what forms is actually the Taylor expansion of the
exponential function:

Ut,tg) =1+ (— /dtlHI t) ( ) /dtl/ dto T{H;(t1)H(t2)} +

= T{exp [—z‘/to dt’HI(t’)]} :

Before moving onto the ground state lets generalize the definition of U to allow it a second value other
than tg. I like Peskin’s comment that the correct definition is now quite natural:

Ut,t) = T{exp [—i /; dt”HI(t”)H . (7.2.16)

It is good to know that U follows the following identities for ¢t; < t5 < t3:

(7.2.15)

Ul(t1,t2)U(ta, t3) = U(t1,t3) (7.2.17)
Ulty, t3) [U(ta, ts)]" = U(te, t2) - (7.2.18)

One can check by using the Schrodinger equation that the this definition of the time evolution operator
satisfies our initial condition and that the operator really is unitary. Now we move onto the ground
state. We will start with |0) and evolve it through time:

e T |0) = Ze‘iEnT|n> (n|0), (7.2.19)

50



In the next step we must assume that |€2) has some overlap with the vacuum state |0), meaning (|0) # 0.
Were this not true, perturbation theory would not be possible. We can write the previous as:

e IT10) = 7o 10)(Q0) + Y " e T |n) (n]0) . (7.2.20)
n#0
for Ey = (Q|H|Q). Since E,, > Ej we can get rid of all the terms in the sum by sending 7' to oo but in a

slightly imaginary direction 7' — oco(1 — ie). The exponential factor at n = 0 falls the slowest, thus we're
left with:

-1
= i —iEo(T+to) —iH (T+to)
0 T%olclf(rllfis) (6 <Q‘O>> ¢ 10)
-1
= . —iEg(to—(=T)) —iH(to—(~T)) ,—iHo(—T—to)
T%iiI(rf—m (6 <Q|O>) ¢ e 0) (7.2.21)
. E (4 T -1
= o (e o= (0I0))  Ulto, ~T)[0)

where we’ve used the fact that Hy|0) = 0. The expression we got tells us that we can get the ground
state by evolving the vacuum state from time —7' to ¢y with the time evolution operator U (to, —T). In
a similar fashion we can express the state (Q] as:

Q= lim  (0|U(T,to) (e—iEo<T—to><0|g>)_1. (7.2.22)

T—oo(l—ig)

Putting everything together now, if we imagine that 2 > y° > t; we can express the two-point correlation
function as:

@ola)owIR) = lim (BT 0j0)) 00Tt
x [U(2° 0)]T¢I() U(2",to) [U(ZJOJO)]T%(Z/)U(Z/OJO)

0) ( —iBo(to—(~T)) <Q|O>> - (7.2.23)
1

X U(th )
- lim (| 0j0) 26~ Eo2T)) -
T—oo(1—1e)

< (0|U(T,2°)pr(2)U (2%, 4°)or(y)U (4°, ~T)|0) .

This kind of looks like a mess but we can engage in a bit of math trickery to simplify it. We will be
dividing the expression by 1, which we’re going to express as the following:

. —1
1=(QQ) = (\<0|Q>|2672E0<2T>) (0|U (T, to)U (to, —T)[0) . (7.2.24)
After that simplification we get the following:

fEO T 1.0 0 0o _
<Q|¢(az)¢(y)\9> _ T_)(gr(rll_is) <0‘U(Ta )¢I(<3TJ[}((T:€%(§)|IO(>:’J)U(ZJ s T)|0> ’ (7'2'25)

where this expression holds true for 2° > 3°. However the expression would still be correct if z° < 30 if
the fields are in proper time order. Thus we arrive at the main result of this section:

OIT{pr(x)dr(y)exp |—i [~ dtH ( |0
<Q|T{¢(:€)¢(y)}|9>: lim { ! ! p[ f 1( }}

| (7.2.26)
T—oco(1—ie) <O|’T{exp [ zf dtH[ ]}|O

We generalize this to an n-point correlation function which of course deserves its own box.
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Remember: n-point Correlation Function

The n-point correlation function in the ¢* interaction theory is given by:
0T i) - Sr(wa) exp [—i [T [ deHin(2)] }10)
QT {80 S)}i) = _lim o .
(1T {exp [~ [T [ d42Hine] }0)
(7.2.27)
The above can also be written as:
~(N)
Cp(21,. .., T0) = 2y Cn (ffl&)“’x") , (7.2.28)
>n Co
where N indicates the order of O(A\Y) in the Taylor expansion in \. For example:
A(N=1) _ A 4
n=z = OIT{61(2)dr(y) ( =iy ) | d*261(2)61(2)¢1(2)¢1(2)}]0) - (7.2.29)

7.3 Wick’s Theorem for Calculating Correlation Functions

We’ve now come to the realization that calculation correlation functions means evaluating expressions of
the form:

O|T{¢1(z1)r(z2) ... d1(2y)}|0), (7.3.1)

that is vacuum expectation values of time-ordered products of a finite number of free field operators.
We've said before that for two fields this is just the Feynman propagator. For more fields we could try
and evaluate the expression by brute force, but in this section we will see how to simplify the calculation
by using Wick’s theorem, which helps tremendously.

Let’s consider again the case of two fields. Since the result is known we can use that to our advantage
to rewrite the expression in a form that is easy to evaluate and easy to generalize. We start of by
decomposing the interaction picture field into positive and negative frequency parts:

¢1(x) = ¢f (z) + ¢7 (2) , (7.3.2)

where the positive and negative frequency parts are defined as:

_ dp 1 —ipx —( EPp 1 i
¢}L(x)—/(27r)3 \/Eape L (ac)—/(%_)3 \/Eapep . (7.3.3)

This decomposition is very handy since it can be done for any free field and it give us the following:

¢f (2)|0) =0, (0]¢7 (x) =0. (7.3.4)

We can use this in the expression for the time-ordered product of two fields:

T{e1@)or(y)} 2" of (@)é] () + 6f (@)67 (W) + 67 ()6} (4) + o7 ()7 (v) (735
= 61 (@)0] (1) + 67 (@)97 (v) + 97 (@)9] (W) + 07 ()7 () + [6] (2). 67 ()] -

In the previous expression all terms except the commutator have a vanishing vacuum expectation value.
This is due to them being in the normal order (e.g., ai,al;akal). For convenience we can define the
normal ordering symbol to put all operators in normal order:

N(apalaq) = alapag . (7.3.6)

It is worth noting that if we considered the case z° < 3° above we would have gotten the same expression
but with the commutator term having switched points [qﬁf(y), lop (ac)} We now introduce an important
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definition, the contraction of two fields:

— {[qb*(:r), ¢~ (y)] if a0 >y°, (7.3.7)

(6% (y), o~ (2)] ifa® <y,
Note: From this point forward I, as well as many other texts, often drop the I subscript from the fields.
This is because we're working in the interaction picture and it is understood that all fields are in the
interaction picture.

The contraction between two fields is exactly the Feynman propagator:

¢(z)¢(y) = Dr(z —y) . (7.3.8)
The relation between the time-ordering and normal-ordering operators is now simple to express as:

T{o(@)o(y)} = N{o(@)d(y) + ¢(x)d(y)} , (7.3.9)

and this can easily be generalized for n fields, thus earning its own box.

Theorem: Wick’s Theorem for m Fields

Wick’s theorem states that the time-ordered product of m fields can be expressed fields in the
normal order plus the sum of all possible contractions:

T{o(z1)p(x2) ... ¢(xm)} = N{d(21)¢(z2) ... d(x,) + all possible contractions},  (7.3.10)

where the contraction between two fields is defined as:

¢t (@), 9~ (y)] if 2% >y°,
g = | £ Eh W] > (73.11)

[¢*(y), o~ (2)] if2® <y”.

Example: For m = 4 fields we have the following:

m — —

T{1234} =N{1234+1234+1234+1234

I — m
+1234+1234+1234 (7.3.12)

siulsviEle

w
=~

+1234+1234+12

b

where we’ve marked ¢, with 1 etc. for brevity and clarity.

7.3.1 Proof of Wick’s Theorem for m = 3 Fields

Let’s prove Wick’s theorem for m = 3 fields. We start by writing the time-ordered product of three fields:

i 1 i
T{b10203} =N <¢1¢2¢3 + P10203 + P1203 + ¢1¢2¢3) . (7.3.13)

This is what Wick’s theorem tells us. Lets start with the LHS and derive it to RHS in the case where
0 0
T1 > Xy 3t

T{p10203} = (o1 + &7 )T {2003}
[
= (¢7 + &1 )N (d26b3 + d293)
1 1
= N(¢f 203 + ¢f d203) + N(d203)d7 + [01, N(d203)] + d2cbsd;
[ [ 1
= N(10203) + N (p10203) + N (d10203 + d10263) ,

(7.3.14)
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where we’ve used quite a few tricks including using Wick’s theorem for two fields in the second line, as
well as putting the field ¢] into normal order from the second to the third line. The commutator we’ve
used above can be evaluated as:

— —
[Qsl ) ¢2 ¢3] = [¢1_7 ¢;r] ¢:?.i_ + ¢;_ [d)l_a ¢;_] = ¢1¢2¢§_ + ¢;—¢1¢3 )
1
where [Qb Qb;—(b?,] = [¢1 ) ﬁb;]ﬁbg = ¢1¢£3 ) (7'3'15)
[(bl ’ ¢3 ¢2] = (b; [(b;a ¢§r] = ¢5¢1¢3 )
[Qslv ¢2¢3] =0,
1 [—
= N(¢p10203 + d16203) ,
where we’ve used the commutation identity:
[A, BC] = ABC — BCA = [A, B]C — B[C, A} = ABC — BAC — BCA+ BAC'. (7.3.16)

The previous commutator indicates that A gets contracted with all remaining operators. We’ve now
shown that Wick’s theorem holds for m = 3 fields.

8 Feynman Diagrams

Wick’s theorem is brilliant since it allows us to turn any expression of the form:

(0| T{¢1(21)P2(x2) - .. pn () }]0) (8.0.1)

into a sum of products of Feynman propagators/two-point correlation functions. Feynman diagrams
are a diagrammatic interpretation of such expressions. Consider for example four fields the expression
for which we expanded in the previous section (7.3.12). We can represent each point in the expression
as a dot and each propagator as a line connecting two dots. The process can be represented as a sum of
three Feynman diagrams:

1

| 2 1 2 2
*————0

(0T {pr20364 }10) = + I I + :><: (8.0.2)
o———O
3 1 3 1

3 4

This isn’t a measurable quantity but it does give hint at an interpretation of the expression. Particles
are created at two spacetime points, then each particle propagates to another spacetime point and then
they annihilate. Since this can happen in three ways we have three diagrams. The total amplitude is the
sum of the three diagrams.

8.1 Example: ¢* Interaction to the 2nd Order

Interesting things start to happen when we have two or more fields in the same spacetime point. Lets
consider the ¢* interaction to the second order. We must evaluate the following:

Co(z,y) = (0T {6() <l—z>\/d4z¢4 )}|o =i 4. (8.1.1)

We've seen before that the first term is just the Feynman propagator Ap(z — y). The second term is
where things start to get interesting. We can expand the expression using Wick’s theorem and evaluate:

o — / dt (01T {8(x)d(y)é (2)}0)
=3 ( 1 )AF@— )/d42 Ap(z = 2)Ap(z = 2) (8.1.2)
+12- < 4")\) /d4z Ap(z —2)Ap(y — 2)Ar(z — 2) .
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We can better understand this expression if we draw each term as a Feynman diagram. Here we must
distinguish between internal and external points.z and y are external points of Cy. The internal points
z can be anywhere and are integrated over. Thus we can draw the following diagrams for the previous

expression:
~ T Yy T ; : Y
02(1) = 6—e ¥z + e (8.1.3)

We refere to the lines in these diagrams as propagators, since they represent the propagation amplitude
Ap. Internal points where lines meet are called vertices. Wick’s theorem represents C’g as a sum of
products of free propagators between points. The scalar particle is created at y and the propagated over
to & where it is annihilated.

8.2 Feynman Rules in Coordinate Space
We can summarize a few rules for calculating the numerator of what is stated by Wick’s theorem (7.3)
which is:

(1T {61(2)61(y) exp [—i / dtHI(t)] HO) = (Ml Rominte fiagrams) (8:2.1)
We build each diagram out of propagators, vertices and external points. The rules for associating analytic

expressions with pieces of diagrams are called the Feynman rules. The rules for the ¢* interaction are as
follows.

Remember: Feynman Rules for ¢* Interaction

The position-space Feynman rules for the ¢* interaction are as follows:

1. For each propagator:

§ ¥ —Ap-y), (8.2.2)

2. For each vertex:

« = —i)\/d4z, (8.2.3)

3. For each external point:

o —1, (8.2.4)
4. Divide by the symmetry factor, given as:

N
% _ % (il) 7 (8.2.5)

where f is the number of Wick contractions that render the same value of contribution to
.

8.3 Feynman Rules in Momentum Space

We've seen the Feynman rules for the ¢* interaction in coordinate space, however it is more convenient
to express the Feynman rules in terms of momenta. We can do this by using the Fourier transform of

the propagator:
dip ie—ir(@-v)
AF(xy)/(Qw)4p2—m2+ie . (8.3.1)
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We can represent this in the diagram by assigning a 4-momentum p to each propagator and since Ap(x—
y) = Ap(y — x) the direction of the arrow in the diagram is arbitrary. We get the following:

Pa p1
s lim d20d3 ze~ P12 TP 2 TIP3 2 o FiPa 2
T—oo(l—ig)

) ) (8.3.2)
3 2
= (2m)*6W (p1 + p2 + p3 — pa)

where the reader can ignore the limit as T — oo(1 — i¢) for now. We will discuss this later (8.3.1). In
other words what we got is the fact that momentum is conserved at each vertex. We can use these delta
functions from the vertices to perform some of the momentum integrals in propagators. That leaves us
with the following Feynman rules in momentum space.

Remember: Feynman Rules for ¢* Interaction in Momentum Space

The momentum-space Feynman rules for the ¢* interaction are as follows:

1. For each propagator:

—>— = N 3 .3.
p2 _ m2 + je (8 3)
2. For each vertex:
= —iA, (8.3.4)
3. For each external point:
s 4 e (8.3.5)
r— b =i (8.3.6)

4. Impose momentum conservation at each vertex.

5. Integrate over each undetermined momentum:

/ (;17:)’4 , (8.3.7)

6. Divide by the symmetry factor, given as:

N
% _ % <i'> f (8.3.8)

where f is the number of Wick contractions that render the same value of contribution to
ON.

8.3.1 What happens to T the slightly imaginary infinite time?

We've ignored the limit as 7' — oo(1 — i) up until now. Time to lift up the rug and clean the mess
we've made underneath. Consider the expression for momentum conservation at each vertex (8.3.2).
The exponential blows up as 20 — oo or 20 — —oo unless it’s argument is purely imaginary. We can
achieve this by taking each p° to have a small imaginary part p oc (1 + ig). This sometimes called the
Feynman ie prescription. It’s precisely what we do when following the Feynman boundary conditions
for computing Ar. We integrate along a contour that is slightly rotated away from the real axis, from
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where we get p oc (1 +ig). The explicit dependence on T seems to disappear when we take the limit
T — oo, but consider the diagram:

P1 P4
(8.3.9)

b3 D2

The delta function for the left-hand vertex is (27)*0*) (p; + p2), so momentum conservation at the right-
hand vertex is automatically satisfied and we get (27)*6(*)(0). We can better understand where things
go wrong if we move back to the position space. Writing the right-hand vertex contribution we get:

/d4w(const.) x (2T") - (volume of space) , (8.3.10)

which tells us that the spacetime process shown in the diagram above (8.3.9) can happen at any place in
space and at any time between —T and T'. Every disconnected piece of a diagram contributes a factor
of (2)48(0) = 2T - V. A disconnected diagram is one that is not connected to an external point.

We can understand this even further if we consider, what Peskin calls, a very pretty identity, called the
exponentiation of the disconnected diagrams. Lets label the various possible disconnected pieces
by a set V;. The elements of this set are connected internally but disconnected from external points.
Let’s assume that some Feynman diagram has n; pieces of the form V; in addition to its one piece that
is already connected to x and y. Let’s let the value V; also denote the value of the disconnected piece V;.
We can then write the value of a diagram as follows:

1

(value of connected piece) - H (Vi)™ (8.3.11)

3

where the 1/n;! factor is the symmetry factor that comes from interchanging the n; copies of V;. The
sum of all diagrams, representing the numerator in the formula for the two-point correlation function is

then:
> Y (connitieaSicee) X (Hi,(V)”> : (8.3.12)

(all connected pieces) (all {n;}) i

where all {n;} denotes all ordered sets of {ny,ns,...} such. For convenience we will mark the summation
terms as (D (connected)). The sum of all the connected pieces factors out just this expression:

= (Zconnected) X Z (H 7111'(‘/;)”7) . (8.3.13)

(all {n;})

We can factor the rest of the expression in a similar fashion:

= (Z connected) X (Z nll'(vl)m> (Z T7J12'(‘/2)n2>

ni na

- (Z connected) x H (Z n1|vZ>

" (8.3.14)

= (Z connected) X Hexp(Vi)
= (Z connected) X exp <Z V;) .

We've just shown that the sum of all diagrams is equal to the sum of all connected diagrams, times the
exponential of the sum of all disconnected diagrams. Now consider the denominator of the two-point
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correlation function expression. By the same argument as above is the exponential of the disconnected
diagrams, like in the numerator. Thus we reach the final simplification of the two-point correlation
function formula, which is the sum of all connected diagrams.

Remember: Simplified Two-Point/Generalized Correlation Function Formula

The two-point correlation function formula can be simplified using the above arguments to:

(QT{d(=)e(y) }I) =

= sum of all connected diagrams with two external points
= &——e + + + o—@—o + ...
€ Yy

(8.3.15)
Likewise we can generalize this to higher order correlation functions, where we simply get:

(T {3(01) .- 3w D) = (m gk commeted dgrams’) (5.3.16)

\

Using the same argument as before we can conclude that disconnected diagrams exponentiate, factor and
cancel out. Friendly reminder here that not all external points need to be connected with each other in
the case of a connected diagram. We use the term disconneceted diagram to describe a diagram that
is completely disconnected from all external points.

o ———— @

o— O

(a) An example of a connected graph. (b) An example of a disconnected graph.

Figure 8.1: Graphs for demonstrative purposes.

9 Cross Sections and the Scattering Matrix

We now have a very handy formula (8.3.16) with which we can calculate n-point correlation functions.
However, the concept of a correlation function is quite abstract and not very physical. We’d now like to
find a way to relate this to physical quantities like cross sections and decay rates, that can actually be
measured in experiments. We will approach this task by relating correlation functions to an even more
primitive quantity called the S-matrix.

9.1 The S-matrix

If we want to discuss the probability of an event happening, we first have a few conditions we need to
satisfy. Most notably, our initial states must be normalized. If we try to do this with something like
planar waves, we quickly run into trouble. Thus we take a different approach where we use Gaussian
Wavepackets as our initial states. A wavepacket representing a state |¢) is given by:

o) = | f;;;lqswkm (0.1.1)

where ¢(k) is the Fourier transform of the spatial wavefunction ¢(x) and |k) is a one-particle state of
momentum k in the interacting theory. In the case of a free theory this would simply be:

k) = /2Egal |0) . (9.1.2)
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The factor /2F) is there to ensure that our relativistic normalization of |k) is consistent with conventional
normalization (in which all probabilities add up to 1). Mathematically this is expressed as:

wo=1 i [ jemr =1 (9.1
= ) =1. 1.
This gives us the probability:
2
P=(102...|pad5.. )", (9.1.4)
where |p4dp) is the in state of two wavepackets constructed in the far past and (¢1¢5 . . .| is a state of sev-

eral wavepackets (more precisely one per final-state particle) constructed in the far future. Peskin reminds
us here that we are using the Heisenberg picture here, which means that states are time-independent.
However the name we give a state depends on the eigenvalues of time-dependent operators. This means
that states with the same name created at different times have non-trivial overlap, which is a result of
the time-dependent operators.

For states |padp) we can take the limit in which the wavepackets ¢;(k;) become concentrated about
definite momenta p;. With this we are able to define an in state |papp) with definite initial momenta.
Another technicality to take into account is the fact that the wavepacket ¢p is transversly displaced
relative to ¢4 in position space. Here we adopt the convention that out reference momentum-space
wavefunctions are collinear (meaning, the impact parameter is b = 0) and write ¢p(kp) with an explicit
factor of exp(—ib - k) to account for the translation in physical space. Now since ¢4 and ¢p are
constructed independently at different locations, we can write the initial state as:

B ha [d®kp palka)pp(kp)e Vs
|pA0B)in =/ / \kakB)in - (9.1.5)
(27T)3 (27T)3 (QEA)(QEB)
It is possible to simmilarly expand (¢1¢s...| in terms of out states of definite momentum which are

formed in the far future

d3p
dPap—i2 = H m |out<p1p2|¢A¢B>in|2 . (9.1.6)
f=1,2

However, for our out states it is much simpler to use the out states of definite momentum as as the final
states in the probability amplitude and to multiply by the various normalization factors after squaring
the amplitude. This is sound as long as the detectors of final-state particles mainly measure momentum
instead of resolving positions (at the level of de Broglie wavelengths). We can now relate the probability
of scattering measured in a real experiment to an idealized set of transition amplitudes between the
asymptotically defined in and out states of definite momentum. It is probably a good idea to remind
ourselves that these states are related by time translation (this is evident if we go back to the Schrodinger
picture):

—Schrodinger

out(P1P2 - - |kakB)in %ﬂ(plpg e HCD) | k4 k) (9.1.7)

Where we’ve defined the states in Schrodinger’s picture at any common reference time. From this we can
see that in and out states are truly related by a limit of a sequence of unitary operators. This limiting
unitary operator is called the S-matrix:

0ut<p1p2 e |kAkB>in = 0ut<p1p2 e | S ‘kAkB>in . (918)

For particles that do not interact at all, the S-matrix is simply the identity operator. Even if the theory
contains interactions there is some nonzero chance of particles missing each other. We can isolate the
interesting part of the S-matrix, the one that describes the interactions, by defining the T-matrix as:

S=1+iT. (9.1.9)

The optical theorem
(T —T" =-TT", (9.1.10)



holds true for the T-matrix which we can see from:
SSt=1=QQ+i")A—ilT)=1+iT -TH +TT". (9.1.11)

We can extract the invariant matriz element M by considering the fact that elements of the S-matrix
must conserve 4-momentum. Thus S or 7 must always contain a factor of §*) (ks + kg — 3. py) which
guarantees such. We define the invariant matrix element M by extracting this factor

(pipa ... |iT|kakg) = (21)*6@W (ks + kp — pr AM(ka, kg = py) . (9.1.12)

A reminder here that all 4-momenta are on mass-shell, thus p° = E,, k° = E,. Additionally this
entire derivation only holds true for the specific case where we have only two particles in the initial
state. For more particles we can analogously define such constructions. Peskin adds to this, that such
complicated experiments are left for another book. The invariant matrix element M represents the
scattering amplitude f that we know from one-particle quantum mechanics.

9.2 Calculating Cross Sections and Decay Rates

To relate M to the scattering cross section o lets first calculate the probability for the initial state |pa¢5)
to scatter and become a final state of n particles whose momenta lie in a small region d3p; ...d3p,. This
is given as

Bpr 1
PAB—12...n) = H(zf)J;E o (P1 - PldadB)im]? - (9.2.1)
f

For a single target particle A and many incident particles B with different parameters b the number of
scattering events is

N= > Pi= /dganP (9.2.2)

all incident

particles
where npg represents the number density of incident particles B. Since we are assuming that this number
density is constant over the range of the interaction, we can take np out of the integral giving us the

cross section o as N
o= = d2b P(b). 9.2.3
npgNa np-1 (®) ( )

With this we can derive an expression for do in terms of M by combining Equations (9.2.3), (9.2.1) and
(9.1.5):

i=A,B
e ) (g} i) Coue (s} {Fi}in) " (9.2:4)

where k4, ks are dummy integration variables for the second half of the squared amplitude. We can
perform the integral over d2b from which we get a factor of (27r)25(2)(kf§ — k). We can conjure up more
delta functions by writing the final two factors from Equation (9.2.4) in terms of the invariant matrix

element M:

o — d3pf 2 dgk (bz z dgzz d);k(El)
dr= | o Jr\ 11 [ Goys e @n? o,

(e o3} | (b i) = iM({I} > (o) (k= Y y) (0:2:5)
(0ut<{pf} ‘ {Ei}>in) - _ZM*({E1} — {pf})(?ﬂ')45 4) (Z Ez — pr) . (926)
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Using all these delta functions together we can perform all six integrals over k in (9.2.4). Of those six
integrals, two (k% and k%) need some some extra work. Let’s take a look:

/dEjdEg S +F5 =S p3) 0(Ba+Es— Y Ey)

/dkf46<\/kf4+mf4+\/k§—m%—ZEf)

o 1

R
E4 Eg

Fa=%pi k%

= . 9.2.7
Ey— (0:2.7)

This ensures that momenta and energies are conserved in the z-direction. The remaining 4 integrals
enforce the constraints k% = k% and kj = kz. The difference [v4 — vg| is the relative velocity of the
two beams as viewed from the laboratory frame. The initial wavepackets we created are localized in
momentum space, centered on py4 and pg. This means that we can evaluate all factors that are smooth
functions of k4 and kg at p4 and pp and pull them out of the integrals. These factors include E 4, Ep,
|va — vpl, and everything M related. All that remains is the following delta function:

dgnﬁlew%H@M|&m/Ms
(2m)3 2By | 2E42Eglva—vg| J (2m)* ) (2m)?

x |oa(ka))? |65 (ks)|* (2m)* 6™ (kA + kg — pr) . (9.2.8)

To further simplify this expression we need to consider the fact that real particle detectors project
mainly onto eigenstates of momentum, but since they have finite resolution, they sum incoherently over
momentum bites of finite size. This means that the measurement of the final state momentum is not
such high quality that we could resolve the small variations in this momentum that results from the
momentum spread of the initial wavepackets. In that case we can treat the momentum vector in the
delta function k4 + kp as being well approximated by its center value p4 + pg. We can then perform
integrals over k4 and kg, while still taking into account the fact that we’d like conventional normalization
of the wavepackets in which the sum of all probabilities is 1. This gives us the relation between the S-
matrix and the cross sections, which deserves its own little box (9.2). Notice how all dependence on the
shapes of the initial wavepackets has disappeared from the final expression.

_ IM(paps = {pr I d®py 4x(4)
47 = B oA — vg] 11 @neE; | 2 (pA +p5 pr) . (9.2.9)
f

If we were to integrate over all the final-state momenta py in Equation (9.2.9) we get an expression which
has the structure:

/dHn - 1;[/ g;f_’)g (2r)46™® (P—pr> , (9.2.10)

where P = p4 + pgp is the total initial momentum. This integral is manifestly Lorentz invariant, since
it is built from invariant 3-momentum integrals constrained by a 4-momentum delta function. It is
known as the relativistically invariant n-body phase space. Since the matrix element M is also
Lorentz invariant the only transformation property for the cross section comes from the relative velocity
pre-factor:

1 1 1

EaEglva—vg| Egpy — Eaps  €paywD'ip}

(9.2.11)

which is not completely Lorentz invariant. It is only invariant under boosts along the z-axis. This
expression has the exact properties we’d expect from a cross-sectional area. We can simplify the Equation
(9.2.9) further in the case of two particles in the final state by evaluating the phase-space integrals in the
center-of-mass (CMS) frame. We'll label the outgoing momenta as p; and py. We can integrate all three
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components of ps over the delta functions enforcing 3-momentum conservation, which sets ps = —p;y.
The two-body phase space integral is then of the form:

dp; p2dQ
1T E —F—FE .2.12
/d 2 = / 277)32E12E2( m)6(Ecms — Er — Ea) , (9.2.12)

where Fens is the total initial energy and E; = y/p? + m? is the energy of the final-state particles.
Evaluating the previous integral yields:

pLo, P\
II Qe
/d 27 /d ].67T2E1E2 (El + E2>

1 |p
= . 9.2.13
/ 1672 Ecms ( )

For reactions symmetric around the collision axis, the two-body phase space integral can be simply
evaluated as an integral over the polar angle in the center-of-mass frame d(cos ). Using this result we
can rewrite the differential cross section from Equation (9.2.9) in the center-of-mass frame as:

(da> _ M(paps = prp)l” Ipi (9.2.14)
CMS

dQ 2E4Ep|lva —vs|  (27)%*Ecms

In the special case where all four particles have the same mass (including the limit m — 0) this can be
even further simplified to:

do M|
— = 2.1
<dQ) CMS 647T2E(23MS (9:2.15)

We are also interested in the differential decay rate dI" in terms of M which we get by slightly modifying
the expression in Equation (9.2.9). All we do is remove the factors that do not make sense for a initial
state of a single particle. Noteworthy is also the fact that by definition the decaying particle is at rest,
thus we can set the normalization factor (2E4)~! = (2m4)~!. With that we can now make a box for all
of our relations where the differential decay rate dI" is given in Equation (9.2.19).
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Remember: Relation Between S-matrix, Cross Section and Decay Rate

The differential cross section do is given by:

IM(pa,ps — () d®py 454
do = 271)45® - 2.1
P T 1;[ Gryag; | 20 (patps=Ypr),  (9216)

which can be further simplified in the case of two outgoing particles to:

(da> _ [M(pa.ps —pLp)®  pl
dQ ) ons 2EAEp|va—vs| (2m)?Ecms

(9.2.17)

This can be even further simplified in the case where all four particles have the same mass (in-
cluding the limit m — 0) to:

do> |IM|? N

— = all masses identical . (9.2.18)
(dQ oms 64T Edys

If we consider the decay of a single particle A into n particles with momenta py, ps, ..., p, we can

write the differential decay rate as:

m 2 3
ar = M f;ﬂ:;{pf})l H@%% (2m) 15 (PA _pr) 7 (9.2.19)

where the decay rate considers the decaying particle to be at rest (E4 = m_).

When computing any total cross section o or decay rate I' we must take care to avoid multiple
counting of the same final state if the outgoing particles are indistinguishable. This is done by
either restricting integration to only inequivalent configurations or by dividing by the factorial of
the number of indistinguishable particles in the final state after integrating over all momenta.

9.3 The LSZ Reduction Formula
9.3.1 Motivation
We want express the S-matrix in terms of correlation functions. Let us try to show that:
VZ = (9/(0)|S(p = 0)) , (9-3.1)

where |S(p = 0)) is a one-particle state at rest and Z the field-strength renormalization constant (or
literally the residue of the single-particle pole). Consider a two-point correlation function:

O (a,y) = (Qd()d(y)[0) . (9.3.2)

Now we insert a complete set of momentum eigenstates between the two field operators:

1= Z/ 5 ) 9F, Ag) Al 5 (9.3.3)

where )\ labels all possible states with momentum g from some Fock space basis, which in general means,
one-particle states, multi-particle states, excitations. Higher-particle states do contribute extra terms to
the two-point function but since they lack poles at the single-particle mass they are irrelevant when we
will take the on-shell limit p> — m2. Thus we only need to consider the one-particle states. We can get
states with ¢ # 0 by boosting the state |[S(p = 0)):

single-particle only dq 1
CO(a,y) R / CToh
(27m)3 2E4

(QU(2)1S(@)(S(a)|d(»)I2) , (9-3.4)
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where Fgq = \/m . Next we make use of translational invariance to rewrite the field operator as:
b(x) = P TH(0)e™ P (9.3.5)
where p* is the four-momentum operator. This gives us:
(QU(2)IS(@)) = e (Q$(0)|S(q)) - (9.3.6)
Now using another Lorentz transformation back to the rest frame of the particle we get:
e (Q1$(0)[S(q)) = e HQUUTTUS(0)U VIS (p)) = (2/(0)|S(p = 0)) (9.3.7)

where U is the unitary operator that performs the Lorentz boost. Since (;3 is a scalar field it is invariant
under Lorentz transformations. Our vacuum state is manifestly Lorentz invariant from which it follows
that this term is momentum independent, which is a very useful property which allows us to define a sin-
gle constant v/Z for the overlap of the field operator with a one-particle state, regardless of its momentum.

With that said we can rewrite Equation (9.3.4) as:

W)~ [ e A0S = ). (9:35)

We can transform the two-point correlation function from Equation (9.3.8) into momentum space via
Fourier transform:

0(2)(])) = /d4x eip'mC(Q)(x,O)

= 4{E eip": d4q i e—iq-z n _ 9
_/d /( [(Q[¢(0)[S(p = 0))]?, (9.3.9)

2m)t q% —m3 +ie

where we’ve imposed the on-shell condition p* = m3 for the single-particle state, such that we can swap
the Lorentz-invariant phase space measure by the four-dimensional integral of the propagator:

dg 1 d*q i
—~ S (? —m?). 9.3.10
./(2nﬁ2Eq /kzwﬂq2nﬁ#m (" =m3) (9:3.10)

Now we perform the integral over d*z in the above expression:

CO) = [ G 205 — IS (p = 0

) ~

= ——5——(Q]¢(0)[S(p=0))]*. 9.3.11

Pz Q9OIS(p =0) (93.11)
From here we can read off that the residue of the single-particle pole is given by:

Res(CP(p)) = Z = [{Q(0)[S(p = 0)) [, (9-3.12)

which was what we wanted to show. This way the two-point correlation function has given us a way to
relate the field-strength renormalization constant Z and particle mass m). The LSZ uses exactly this
same idea of extracting residues of poles from correlation functions for each external particle. Once we
know the pole structure, we can systematically amputate the external legs of the correlation functions
and take the on-shell limit to turn Green’s functions into S-matrix elements.

9.3.2 The LSZ Theorem

The LSZ theorem named after Lehmann, Symanzik and Zimmermann provides a way to relate S-matrix
elements to time-ordered correlation functions. Let us derive the LSZ theorem for an interaction between
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4 scalar fields ¢. Diagramatically this means we have:

T2,P2 Y2, ko
(9.3.13)

T1,P1 Y1, k1

where the gray blob represents all possible interactions between the four fields. We want to amputate
the external legs of this diagram. Mathematically the diagram corresponds to the 4-point correlation
function:

CW (w1, w2,y1,52) = (AT {d(1)d(22)D(y1)D(y2) }Q) | (9.3.14)

which we can transform into momentum space via Fourier transform:

CD (py, o bt k) = [ / dh e / dtyje= " QT {d(a1)dlw2)d(y1)o () }I) . (9.3.15)
i=1,2

j=12
As we've seen in the previous section (see Equation (9.3.11)), each external leg gives us a contribution

from the single-particle pole:
ivZ

—_—. 9.3.16
p? —m% +ic ( )

/d4wieip’i'g”’i¢(fri) ~
Thus for all four external legs we have:

2

p? —m% +icp3 —m% +ic ki —m% +ic k3 —m3% +ie

(9.3.17)

After amputation, the piece that is left corresponds to the fully interacting amplitude (py,p2|S|ks, k2)
which is exactly the S-matrix element between asymptotic states pi,p2 and ki, ks. This is because it

holds:
Heisenberg Picture Schrédinger Picture (9 3 ].8)

out(P1,P2|k1,k2)in —  (p1,p2|S|k1,k2)

where S = limy_, o exp[—iH (2T)] is the S-matrix operator. Remember, the S-matrix is defined as the
time-evolution operator in the interaction picture, which evolves states from the past to the future. So
fully combining all these pieces we arrive at:

0(4) (p17p27 kla k2) = H

1=1,2

H [ (p1.p2|Slk1, k) | (9.3.19)

pz—mR—i—zs_ Z12 '

where mp is the renormalized mass of the particle. This is exactly the LSZ theorem for 2 — 2 particle
scattering. So we’ve found the LSZ procedure for scalar fields, which deserves its own box.

Remember: LSZ Reduction Procedure for Scalar Fields

For any n-point correlation function of scalar fields we can obtain the S-matrix element by:
1. Take the n-point correlation function C)(z1, s, ..., y1,y2).
2. Insert complete sets of momentum eigenstates between the field operators.
3. Transform it into momentum space C'™ (py,pa, ..., k1, k2).

4. Amputate the external legs by dividing by the single-particle propagators to isolate the
S-matrix element.
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9.3.3 Example: LSZ Reduction for Two-Particle States

Think back to Equation (9.3.3) where we inserted a complete set of states from the Fock space basis.
Instead of only considering one-particle states we can also use multi-particle states. The result is more
or less the same, but bookkeeping changes a bit so it might be worth it to go through as an example. So
consider the 4-point correlation function where each leg now represents a composite operator that creates
a two-particle state:

i)(yl’ y2)

= CW (@1, 22391, 42) = (AUT{ (w1, 22) 0T (y1,92) }Q) (9-3.20)

<i>(a?1, CL‘Q)
where ®(z1, 22) = ¢(x1)P(22) is a composite operator that creates two particles at the spacetime points

x1 and z5. This still represents a 4-point correlation function as each composite operator contains two
fields. The Fourier transform of this correlation function is:

CY (py,p2; k1, ko) = /d4$1 dtzg dtyy diy, efProvtpzea)=ilkiyithey2) W (1) goiy) ys) . (9.3.21)

Now we insert a complete set of two-particle states between the field operators:

1= [ o [ am 5@ S(a) (S(@)S (@) (93.22)

where |S(g1)S(g2)) is a two-particle state with momenta g; and g». Additionally we make use of trans-
lational invariance to rewrite the field operators as:

(QU(21)d(w2)[S(a1)S(g2)) = e ™1 F721(Q|(0)(0)]S (91)S (a2)) - (9.3.23)

All combined this gives us:

6(4)(p1,p2;k1,1€2) :/d4xleip1-at1/d4$2€ip2.z2/d4y1€—ik1-y1/d4y26—ik2<y2

/ dql 1 dq2 1 e—i(Q1'$1+Q2'£B2)
2n) 2B, | (2n) 2B,

d‘h dgy 1 i(q} - y1+dahy2)
)3 2E (2m)3 2E, .,

<QI¢( )$(0 )IS(q1) (42))(S(91)5(42)[$(0)$(0)[€2) . (9.3.24)

What is left is to evaluate the coordinate integrals which will impose the on-shell condition p? = m% for
each external leg (see Equation (9.3.10)):

:/ - L m) Y (- ) / o L (2m)% ) (s — )
(2m)* qf — m3, +ie Pr=au [ omt @ —m? +ie P2 — G2
d4 ' 7 d4 / i
x 2m)46W (ky — ¢ / 246 @ (ko — o
/(27-‘-)4 72 m2R+2€( ) ( 1 ql) (271')4 12 m%—‘,—zg( ) ( 2 q2)

X (Q]$(0)$(0)[S(p1)S(p2)) (S (p1)S (p2)|6(0)H(0)|2)
iNZ iNZ iNZ iNZ

p? —m% +ic p3 — m% +ic kI —m% +ic k3 —m% +ie
x (2]$(0)$(0)|S (p1)S(p2)) (S (p1)S (p2)|6(0)6(0)[€2) - (9.3.25)

Near the simultaneous single-particle poles the two-field matrix element factorizes as:

(Q1$(0)(0)]S(p1)S (p2)) = (2S(0)1S (1)) {QUS(0)|S (p2)) + (other pieces) ~ VZVZ, (9.3.26)
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We only want to keep the simultaneous single-particle poles and the other pieces, which leaves us with:

(Q21$(0)6(0)[S(p1)S(p2)) (S(p1)S (p2)|6(0)$(0)|2)
~ 72(2m)*6W (py + p2 — k1 — ka)iM(p1,p2 — k1, k2) (9.3.27)

where the overall momentum-conserving delta function comes from translation invariance of the full
correlator. What remains is the invariant amplitude with which we can now write the S-matrix element:

Slki, k
(p1, p2S|k1, 2>k%—m%+ifsk§—m%+i6

0(4)(p17p2;k17k2) - 2

9.3.28
p? —m% +ic p3 —m% +ic ( )

For identical particles we must sum over all possible permutations of the external legs; we absorb that
factor into the invariant amplitude M. That was a hell of a lot of work to reproduce the same result as
before, but it is important to see that the LSZ reduction procedure works for any number of particles,
not just one-particle states.

Remember: General LSZ-Reduced Correlator

Following the same procedure as in Section 9.3.3 we can write down the general LSZ-reduced
correlator for n incoming and m outgoing particles:

C’(n+m)(p17 R 7pn; kl? A "km) =

- iNZ R
—(TT-——-"2 _\pr,....pulSlks, . Ko, . 3.2
(H g_m%ﬁ_w)@h ,Pn|S|k1 Hk;?_mR+ze (9.3.29)

j=1"1

For identical particles we must sum over all possible permutations of the external legs; we absorb
that factor into the invariant amplitude M.

9.4 Feynman Rules for Fermions

Thus far we’ve only discussed Feynman rules for the ¢* theory. So before we go on to adding fermions
to our theory we need to generalize what we learned in Sections (7), (8) and thus far in Section (9)
to also apply to fermions. Our perturbative expansion of the n-point correlation function in terms of
the interaction Hamiltonian is simple to generalize since Lorentz invariance requires that the interaction
Hamiltonian is made of a product of an even number of spinor fields which means we have no difficulty in
defining the time-ordered exponential of the interaction Hamiltonian. However to apply Wick’s theorem
(7.3) we need to generalize the definition of the time-ordering and normal-ordering operators to also
include fermions. To stay consistent with how we defined the fermionic propagator (4.6) earlier we define
the time-ordering operator as:

) if 29 > ¢°
T{w(x)w(y)}{ —Zéyizgz; ii mozzof (9.4.1)

For products of more than two spinor fields we generalize this definition in the natural way where the time-
ordered product picks up a minus sign for each interchange of operators that is necessary to put the fields
in time order. Same for the definition of the normal-ordering operator N'. Due to the anticommuting
nature of fermionic fields it is possible to write a normal-ordered product in several ways, which are
essentially equivalent:

Napaqal} = (-1)%alaya, = (-1)%alaqay, . (9.4.2)

With that we can now generalize the Wick’s theorem to fermions which deserves its own box.
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Theorem: Wick’s Theorem for m Spinor Fields

Wick’s theorem states that the time-ordered product of m spinor fields can be expressed as the
fields in the mormal order plus the sum of all possible contractions:

T {123 .. } = N{t11p2)3 - - - + all possible contractions} (9.4.3)
where the contraction between two spinor fields is defined as:
1 P(), v (y)} i 20 >0,
Y(@)P(y) = { +( ) _( )} o0 o (9.4.4)
¥ (), v (@)} if2® <y’
— LI
Y(z)Y(y) = ¢Y(z)y(y) =0. (9.4.5)
Example: For m = 4 spinor fields we have the following:
— M _ —_1 —a_
T{1234} =N {1234+1234+1234+1234
+12344+12344+1234},

where we’ve marked 11 with 1 etc. for brevity and clarity. We can expand a contraction to see
more clearly what it works. Say for example:

N {1 (1) 2 (2)s(x3)Pa(xa) } = —Sp (w1 — 23)H DN {ho(w2)a(z4) } - (9.4.7)

9.5 Example: Yukawa Theory/Interactions Between Fermions and Scalars

Now that we have the framework needed to work with fermions and scalars it is quite simple to join
the two in a single theory. The simplest way to do this is to add a Yukawa interaction term to the
Hamiltonian density:

7{ = 7'LDirac + 7_[Klein—Gordon + 9121/%;5 5 (951)

for a coupling constant g. This is a simplified way of QED which we will discuss in more detail in the
next chapter. So lets work out the rules of calulation in this theory so that we can guess the rules later
for QED.

9.5.1 Two Fermion to Two Fermion Scattering

Let’s consder a two-particle scattering procees which we can abstract as:
fermion(p, s) + fermion(k, r) — fermion(p’, s") + fermion(k’, r’), (9.5.2)

for initial momenta p and k, final momenta p’ and &’ and initial and final spin indices (polarizations) s, r
and s, r'. We want to evaluate the transition amplitude (T-matrix element) for this process as before:

(ATl) = i (exp | =i [ ats(:)0160) Yo (953

The tree-order Feynman diagram for this process is the 2nd order diagram in the interaction Hamiltonian,
which means we have to expand the time-ordered exponential to second order. We do not need to worry
about the identity term in the expansion since we’re computing the T-matrix element, where the identity
term (ie. no interaction) does not contribute like in the S-matrix element. The 1st order expansion term
is also not relevant since it does not relate to a physical process, ie. ¢ — 11 is not something that can
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happen. Thus we need to evaluate the second order term in the expansion:

_ s (i) / d'z / dty (T {B() YB()b () 6(y) Hido

f(l) /d4 /d4y . / ’)|<f(10’I7 5’)|N{¢I1Ip$$w1?yqlby(;y}|f(p; s))|f(l~cl7 o, (9.5.4)

where we have no extermal scalar particles, which means we need to contract the scalar field with itself.
The constant (1) = 2 since we have two indistinguishable particles and we could feasibly do z <+ y and
get the same Feynman diagram. We’d need to calculate the contractions on the initial and final states,
for example:

— a3y’ N ,
Plp, 8)y =¥ |p, s) = / \/ﬁ Za —ip’-x /2Epa;T|O> ,

3,/
:/(%;I\ZT,Z () (27)* 6@ (p) — p)bs e /2E,)0)

= ="y (p)[0) (9.5.5)

where 1)~ represents the positive frequency part (ie. where the annihilation operator is) of the spinor
field . What we got is percisely the external leg factor in the Feynman rules for an incoming fermion.
Likewise we could evaluate a simmilar contraction and get the following for the external leg factor of an
outgoing fermion:

1 _ .

<p7 SW = <p7 SW =.-.=e"? Ias(p) . (956)
With this knowledge we can evaluate the contractions in Equation (9.5.4) along with the definition of
the scalar propagator (2.11.3) to get the following expression:

| f(l) Zg 4 4 zk:/w r —ik-x—s"( 1N\ up -y, s —ip-y
(fliT|i) = diz [ d'y ug (k)e™ "y, (p')e™” Yuy(p)e

—ta(@=y) 9.5.7
></(27r) q? —m¢—|—zse ( )

We can easily perform the integrals over z, y and the undetermined momentum ¢ as:

d4q a4 —iz-(k—k'+q) 44 —iy-(p—p'—q)
emi ) ° v

d4q / ’
- / (2m)'6 (k — K + q)(2m) 6D (p — ' +q)
(

(2m)*
=2m)* 6Dk —K +p—1p), (9.5.8)
which we see gives us the momentum conservation delta function. We need to determine the factor p%,lv)
which gives us the sign which we get from the anticommuting nature of the spinor fields while doing
Wick contractions. We need to get the operators into normal order before we can do the contractions.
Each swap of two spinor fields gives us a minus sign. Swaps for scalar fields do not change anything since
scalars commute. We could rewrite the expression in Equation (9.5.4) as:

1
(FIT]) = FOp (1) /d4 /d4 0|ak,b5/./\/{1/)x1/)r¢x¢y¢y¢y}bSTa
— o
_ jm (97 / d'z / dy (~1)(~1) (=12 (0laf by by bu0yb i 0) . (95.9)

We can see that we needed to perform an even number of swaps to get the fields into normal order, which

gives us a factor of p(l) = (=1)(=1)(=1)? = 1. From this we can finally read the scattering amplitude
iM from the T-matrix element as we defined it in Equation (9.1.12):

1) ;
. P _r! / . r —s’ / . S ¢
iMD = S%U (k) (=ig u"(k)u* (p')(—ig 1u (P)m ) (9.5.10)
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where 1/5(1) = f(l)/n! is the symmetry factor for the process, which in our case is 1 since f(!) = 2 as we
have fields that cannot substitute for each other in contractions and n! = 2! = 2, as we have two particles
in the final state. Thus the amplitude (9.5.10) represents the following two Feynman diagrams:

fp, s) fR ) f(p, s) fE )
>£< orifzx <y Y x . (9.5.11)
®', ) fk, ) fw' ) [k, )

We're not done yet however as there is another possible way we can do contractions in the expansion
from Equation (9.5.4):

_ s (Zi9) /w‘/&yoﬁmw )3 (w)o(u) Hido

- f(2) /d4 /d4y o K. I, S/)IN{lllzllmébxz?yz{qulby}\f(pl, ) (ky 7))o

l_ll_|

_ y i) ‘ﬂﬁ/& D) (=) 0la Dby 0000 Wy 10) (9.5.12)
where we can see that in this case we had to perform an odd number of swaps to get the fields into normal
order, which gives us a factor of pg) = (—1)(=1)(—1) = —1. Which we could continue to evaluate this
expression as analagously as before to get the other scattering amplitude:

(2) £(2) :
- 2 Pw f —r’ . s —s’ - r ¢
iM®P) = ol a" (K')(—ig 1)u(p)a* (p')(—ig1)u (va (9.5.13)

where 1/ s(?) =1 again with the same arguments as before. This amplitude represents the following two
Feynman diagrams:

f(p, 5) fK ")

x orifz <y (9.5.14)

[, s) [k, 7) f',s) [k, 7)

The total scattering amplitude is then the sum of the two amplitudes. The set of diagrams it represents
depends on which order for x and y we choose.

9.5.2 Fermion, Anti-fermion Annihilation to Pair of Bosons

As an exercise we can also consider a 2nd order process where a pair of fermion and anti-fermion annihilate
to produce a pair of bosons. We can abstract this process as:

fermion(p, s) + fermion(p’, s”) — boson(k) + boson(k) , (9.5.15)
where we have initial momenta p and p’ and final momenta k and k’. Notice that bosons of course have no

spin indices. As before we want to evaluate the transition amplitude (T-matrix element) like in Equation

70



(9.5.3). Similarly to the previous example we need to expand the time-ordered exponential to second
order as such:

(fliT|i) = f(o) /d4 /d4y 0 (b(k/)”d{izcwxd)m&ywy(by}|f(p7 S)f(p/, s'))o

_ jo i) / d'a / dy o ((k) W{wmxwywmy}lfp, J0l N (9310

where we have fermions in the out state which means that we need to contract the fermion fields amognst
themselves. We could now evaluate the contractions as we did before but we can also read the contractions
from the Feynman rules (see Appendix ?77), which gives us the following:

(0) ;
. PW s i(g +my)
_ fw —jgl)—t 77 0.1
iM O (p")(—ig )q27 12/) U (p), (9.5.17)

where we could figure out that p(o) =1 and s(9 = 2/2! = 1 since we have two fermions in the initial state
and they cannot be interchanged and we can swap = <> y. Remember here that external leg contractions
for scalar fields simply yield 1. This amplitude represents the following Feynman diagrams:

o() oK) o() o)

y T orifz &y Yy —<—% I . (9.5.18)

f(p, s) f, s f(p, s) f', s

10 Quantum Electrodynamics

10.1 From Yukawa Theory to QED

To transition from Yukawa theory to Quantume Electrodynamics (QED), we need to replace the scalar
particle ¢ with a vector particle A, and replace the Yukawa interaction Hamiltonian with the electro-
magnetic interaction Hamiltonian:

Hint - _Cint - _e&avggd]ﬂAu 5 (1011)

where e = —eq is the electron charge in the case of the electron field. This term will appear naturally in
the Lagrangian of QED as we will see.

Remember: Spinor Indices

Don’t forget that the spinor indices «, 8 are contracted with the Dirac matrices fygﬂ. Yo 1S
mathematically a vector and as such has additional indices. Since this is more or less evident, 1
will be dropping the spinor indices in the rest of this section, but please keep in mind that they
are there otherwise contractions would not make sense.

We've introduced the 4-potential of the electromagnetic field, A,, which is a vector field. It and the
electromagnetic field strength tensor F),, are defined as:

= (¢7 _A) ’
F,, =0,A, —0,A,,

( )
( )
FY% =FE", (10.1.4)
Fij _ _%EijkBk ’ ( )
8 F" =0, ( )
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where the last equation is the source-free Maxwell equations ie. the equations of motion for the electro-
magnetic field. Since QED is a gauge theory, we need to introduce the covariant derivative:

D, =0, +ieA,(z), (10.1.7)

as a way to ensure gauge invariance under local U(1) transformations. Where of course, the transforma-
tions occur as:

U(z) = e @y(x) (10.1.8)
A (z) = Au(z) — éﬁﬂa(x) . (10.1.9)

From that, we can write the Lagrangian of QED as:

1
Lqep = Y(iv*D, — m) — ZFWFW , (10.1.10)
where if we expand the covariant derivative, we get:

. _ 1
LqeDp = Wy 0u) — mypp — ey Aynp — EFWFW , (10.1.11)

where we can explicitly see in the third term the interaction between the fermionic field ¥ and the vector
field A,,.

10.2 Gauge Fixing and Photon Polarization in QED

As we’ve just discussed, QED is a gauge theory, which means we have too many degrees of freedom in our
vector field A,. That is to say that not all components of A, are physical, some are redundant exactly
due to gauge invariance. To account for this redundancy we need to fix the gauge with a gauge fixing
term, which imposes a condition on the vector field A,,.

10.2.1 Lorenz Gauge

A very common gauge fixing condition is the Lorenz gauge, which is defined as:
0, A" =0. (10.2.1)

Lets consider just the EM field part of the Lagrangian for now, ignoring all matter fields:

1
L= ~1 w MY (10.2.2)
By imposing the Lorenz gauge condition on the equations of motion for the EM field (10.1.6) we get the
following new equation of motion:
O AF =
9, F' =9, (0" A — 9" AM) = 9,0" AY — 9”9, A" "= 0 0,0"'A" =0A4" =0, (10.2.3)
which we can do since partial derivatives commute (at least in flat spacetime, but that is beyond the
scope of this discussion) and O is the d’Alembert operator. Lets try and solve this wave equation by
assuming a plane wave solution ansatz as:

A (z) = et (k)e * (10.2.4)

where e#(k) is the polarization vector of the wave. With this choice we see that k% = 0, so this represents
a massless field. The Lorenz gauge condition (10.2.1) then gives us the constraint on the polarization

vector:
OMA, =0= ke (k)=0, (10.2.5)

which essentially means that the polarization vector must be orthogonal to the wave vector k* /momentum
4-vector of the wave. Since we imposed a single constraint on a 4-vector, we have 3 degrees of freedom left,
but we still have degree of gauge freedom even with the Lorenz gauge condition. To see this concretely,
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let’s imagine that we have a photon traveling in the z direction. The wave vector of such a photon is
then:
k= (|kl, 0,0, |k[) (10.2.6)

and since the polarization vector must be orthogonal to the wave vector, we get the condition:
KL — k33 =0 = =63, (10.2.7)
This gives us a general polatization vector of the form:

et = (50, el &2, 50) , (10.2.8)

which we can easily see has 3 degrees of freedom. €!,£? are the transverse polarizations, while e = &3 is

a combination of the time-like and longitudinal polarizations. If we wanted to fix this explicitly we can
also get rid of the gauge freedom that we still have under the Lorenz gauge condition by using a gauge
transformation of the form:

1
At — AF — —0,a(x) , (10.2.9)
&
E#e—zk-m N Eue—Lkw _ 70(_“6#)6—”?'33 , (10.2.10)
e

where C' is a constant. We will label D = %C’ such that the transformation resembles the form ¢, —
ey + DEk,,. This essentially allows us to shift the polatization vector by a constant along the direction of
the wave vector, so we can choose such a D that € = £3 = 0, which gives us the transverse polarizations
only:

e = et + Dw,0,0,w) = &*=(0¢"¢%0). (10.2.11)

10.2.2 Coulomb Gauge

Another common gauge fixing condition is the Coulomb gauge, which is defined as:
V-A=0. (10.2.12)

This would lead us to essentially the same results where we eliminate all longitudinal polarizations and
are left with only transverse polarizations, with the added caveat that the Coulomb gauge condition is
not Lorentz invariant, so it is not a good choice for relativistic theories.

10.2.3 Naive Canonical Quantization

With the gauge fixing condition in place, we can now promote our fields to operators and quantize the
theory. We can naively try to canonically quantize the theory. Let’s define the conjugate momenta of
the fields as:

oL

) (10.2.13)

With such a definition and with the Lorenz gauge condition (10.2.1) (and transformation (10.2.10)) we
can quickly see that:

1T,

oL
m == 2o, 10.2.14
o) # ( )
m =95 _y, (10.2.15)
d(Ao)

which means that with our choices of gauge fixing condition and transformation, Ay has no dynamics and
is not a true degree of freedom but rather a constraint. This means that canonical quantization does not
work for gauge theories like QED, since we cannot use such a constraint. One can find rigorous ways to
quantize the EM field for example in Chapter 9.4 of Peskin but we will not go into that here. For those
interested, the subject Gauge Field Theory goes into details about how to quantize gauge theories like
QED using via Path Integral quantization, the addition of Faddeev-Popov ghosts and BRST formalism
etc.
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10.2.4 Feynman Gauge

We can somewhat fix this problem with Iy = 0 by introducing a new gauge fixing condition called the
Feynman gauge, which stems from the Lorenz gauge condition. More specifically it is the R, gauge fixing
condition with £ = 1. This means that we add the following gauge fixing term to our Lagrangian:

]. nman ]-
Lor = i(aﬂAﬂf Feypma 5 (0,412 (10.2.16)
With this term added to the Lagrangian, our definition of the conjugate momenta becomes consistent:
H—aiﬁ;«éo v €{0,1,2,3} (10.2.17)
v — 8(80AV) ) ) ) ) .

and our equations of motions and solutions remain as before in the case of the Lorenz gauge condition.
So:

9, 0" AY =0A” =0, (10.2.18)
At (z) = et (k)e * (10.2.19)

This method is not without its own problems however. Most are going to be fixed down the line but
I thought it was worth mentioning that while the Feynman gauge condition allows us to canonically
quantize the theory, is still allows issues to lurk in the theory. For example, we still have time-like and
longitudinal polarizations which are unphysical degrees of freedom and more scarily we have negative
norm states if we were to try and naively construct a Hilbert space. We can still interpret the theory
physically by imposing constraints on physical states (for example, Gupta-Bleuler formalism), but we
will use a different trick in upcoming sections. Still in general it is better to quantize QED using path
integrals.

10.3 The Ward Identity

One method of fixing the issues with unphysical states in QED when using the Feynman gauge and
canonical quantization is to use the Ward identity. It arises from the gauge invariance of the theory
and more widely from the Ward-Takahashi identity. It could be described as a specialization of the
Ward-Takahashi identity to S-matrix elements and of course it deserves its own box.

Theorem: The Ward Identity

Let’s define the invariant matrix element M as:
M(k) = e (k)M* (k) , (10.3.1)

where €, (k) is the polarization vector of the photon and M (k) is the invariant amplitude without
dependence on the polarization vector. Then the Ward identity states that for on shell/real
photons:

ky MP (k) =0. (10.3.2)

This means that the invariant amplitude M* (k) is orthogonal to the wave vector k* of the photon.
Practically this means that longitudinal polarizations, along with time-like polarizations (because
e¥ = ¢?) that arise from the Feynman gauge are unphysical and do not contribute to the invariant

amplitude M*(k), only transverse polarizations do.

10.4 EM Field Operator and Commutation Relations

Now that we’ve somewhat successfully quantized the theory, we can define the EM field operator which
is important enough to warrant its own box.
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Remember: EM Field Operator and Commutation Relations

The EM field operator A, (z) is defined as:

3

dk r —ik-x 1T r* ik-x T
A(z) = / W;[ay(k)e bogg + ey (ke ok ] = Al (a), (10.4.1)

where we notice a very important property of the EM field operator - it is Hermitian, ie. self-
adjoint. We’ve summed over all polarizations (one time-like, two transverse and one longitudinal)
as it is necessary to do so in intermediate steps. The Ward identity guarantees that only the
transverse polarizations contribute to physical amplitudes, so we can ignore the time-like
and longitudinal modes in the final result. The EM field operator satisfies the free wave equation
(its equation of motion):

0,0"A,(x) =0, (10.4.2)

which is the same as the equation of motion for the EM field that we derived earlier, due to our
choice of gauge fixing condition. This gives us Maxwell’s equations in the absence of sources. We
can postulate the following canonical commutation relations:

T
] = (27m)36® (k — k)3, (10.4.3)

r o7 #0
lag, ap] = [af,, a;'] =0, (10.4.4)

’
[a27 a};’

where aj, and aQT are the annihilation and creation operators for the EM field, respectively. In
the case of the above commutation relations, » = 0 would yield to big problems, ie. negative norm
states which break unitarity and the probabilistic interpretation of the theory, but we can again
ignore it due to the Ward identity.

10.5 EM Field Propagator

Like other fields, the EM field has a propagator which is defined as the vacuum expectation value of the
time-ordered product of the field operators:

Dy (z —y) = Au(2) Ay (y) = (O T{Au(2) AL (y) }]0) - (10.5.1)

Using the definition of the EM field operator (10.4) we can compute the propagator in momentum space
as:

4 . 3 r r
Doty - [ 5 DT

(2m)4 k2 +ie
d*k —igu  _i (r—1)
= Soe T 10.5.2
/ @) 2 +ie” ’ (10.5.2)
where we used the identity /completeness relation:
3
ZEL(/@){{;(/{) = —YGuv (1053)
r=0

This is analogous to how for 3D space and an orthonormal basis {ei} we have the completeness relation:

3
> elek =ik, (10.5.4)
=1

where ¢! is the j-th component of the i-th basis vector. We can also quickly sketch out the proof that

such a propagator is really the Green’s function of Maxwell’s equations:

Ak —igu (—ik)? i (e
BgagDW(:C—y)m/(27r)4 i}zizs) e @) o g (2 — ) . (10.5.5)
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For posterity, the propagator deserves its own box as well.

Remember: EM Field Propagator

The EM field propagator is defined as:
—
Dz —y) = Au(x)Au(y) = (O] T {Au(2)Au () }10) (10.5.6)

In momentum space it is given by:

_Zg v
Du(k) = 155 (10.5.7)

while in coordinate space it is given by the Fourier transform of the above expression:

d*k —ig., ik (p—
Dule —9) = / (2m)* k2 +Hz'ee He (10.5.8)

where g, is the metric tensor of Minkowski spacetime.

10.6 Feynman Rule for External Photon Lines

Now that we’ve implemented all this formalism, we can also easily compute the contraction of the EM field
operator with external photons. Lets say we have an external photon with momentum % and polarization
r. Just like we calculated the contraction of the scalar field operator with external scalar lines in Yukawa
theory, we can do the same for the EM field operator:

AR ) = 4@tk = [ G S Z (g™ =15k, 1)

Bk . .
- | e > Za; (K )ahye™ /2B, )

d?K/ —ik’

- | e CSENcowPa Z (k) (2m)5 ) (K — k)5 e /2154 0)

=" (k)e *|0), 10.6.1
N

where we used the fact that the single photon state |y(k, 7)) = v/2Egaj,'|0) and the positive frequency
part of the EM field operator as we’ve defined in (10.4). The same process can also be done to compute

the outgoing photon state contraction:

d3k/ 7" T K3 T
DA @) = (DA = () [ e 3 e e

a3k’ o1 ik
O‘\/2Ekak/ szg a/kl ek

4k ’ 35(3) (J ik @
O\\/QEk/ sz (k') (2m)20) (k! — k)6, .ve
= (0lej, (k) ™™ . (10.6.2)

Just as an additional note for the reader. We used the EM field commutation relations the get the delta
functions in the above contractions. Like such:

a

a;w’:ﬁ@ = [(QW)35(3)(,€/ CK)S + all ag]0) aj|0)=0

2m)36@) (K" — K)d,.,|0) . (10.6.3)
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10.7 Feynman Rule for QED Vertex

The tree-order Feynman diagram for the QED vertex is given by the 1st order diagram in the interaction
Hamiltonian, which means we have to expand the time-ordered exponential to the first order. As with
Yukawa theory, we do not need to worry about the identity term (ie. no interaction) since it does not con-
tribute to the S-matrix element, which describes only interactions. The vertex is given diagrammatically
as:

e(p/, §)

YK, )
z = ole(@’, (K, ") — iHincle(p, 8))o (10.7.1)

e(p, s)

thus we need to evaluate the following:
0<e(p,7 S/)’y(klv TI)' - Z'r}'[int|e(pa S)>0 =
o fpl i 4 iy ’o - m _
= IV i) [[ats el (K, N LB 00D A0 () e, )0 =

= (—iey")a® (o' yu'pel, (k') (10.7.2)

where we took into account that £ PW. = 1. If we remove the external contractions, we get the contribution
of the QED vertex to the S-matrix element:
MY, = —iey!, (10.7.3)

Vertex

which is the Feynman rule for the QED vertex.

10.8 Assorted Scattering Examples
10.8.1 Compton Scattering

Say we want to compute the scattering amplitude for non-polarized Compton scattering, where a photon
scatters of an electron. The process is given by:

e (p, s) +y(k, 1) = e (', s") + (K, 1), (10.8.1)

which we can represent diagrammatically as:

e (p', ) y v(k, 7) e (v, 5) y v(k, 7)
1 7
q orifz <y q . (10.8.2)
v v
e (p; s) v V(K ') e (p s) v V(K )

Using Feynman rules we can determine that the scattering amplitude for this process is given by:

. — (s 2_—s IN AT / 1 T v, s
iM = (—ie)™u” (p')y"e), (k)iq%_mzﬂgéy(k)v u®(p)
i(g,, +ml) o

2T Ryt 10.8.3
B ik (K")v"u*(p) ( )

+ (—ie)*a (p' )" el (k)
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where «, 8 are spinor indices, s = 1 and py = 1. To make averaging over polarizations easier, lets define
a tensor-valued vertex kernel Fgg which will hold the full spinor and Lorentz structure in our scattering

amplitude.
+m g, +m
o — | (p_ o) (e , 10.8.4
ob KW @ —m?tic B T @ -m2yie! B ( )

where q; = p +k is the s-channel internal momentum and ¢ = p—k’ is the u-channel internal momentum.
More about the so-called Mandelstam variables can be found in the Appendix (??). Using this vertex
kernel, we can rewrite the scattering amplitude as:

iM = —ieel (k)el, (K')as ()W us (p) (10.8.5)

To properly average over the polarizations of the external photons we need to calculate |M|?, which
means we need to find the complex conjuugate of the scattering amplitude:

/ ’

—iM* =ie’e, " (k)el, (K )us, (p)Th ub (b)) (10.8.6)
where we defined the dual vertex kernel as:
IhY% =4Ti0. (10.8.7)
With all this we can now compute the squared scattering amplitude:

|M‘ion—pol = 64 [; Z 52(16)52’*(]“)] [ Z 52/’(k/)€zl*(k/)‘|

r'=1,2

1 N _ ~ /V/ N ! v

x [2 ) u;@)u;,(p)] oy [ S )y (p’>] o (10.8.8)
s=1,2 s'=1,2

where the first two sums are over the polarizations of the external photons and the last two sums are
over the spins of the external electrons. It holds that:

[Z en (K)el, (k’)] = — G s (10.8.9)

r’'=1,2

[Z “%lf(p’)ui’(p’)] =@ +ml)pa- (10.8.10)

s'=1,2
Which means that we can rewrite the squared scattering amplitude as:
1 ~ 17
|M|1?10n—pol = 64191111’9#/1’ (? + m)ﬁa’l—‘g/;(}’)l + m)ﬁ’argg . (10811)

The contraction over spinor indices gives us the trace ie. Ago'Barg = Tr(AB). Making use of the metric
tensors we can then simplify the expression to:

1 -
2 4 v v
IMliion-por = € T [(?-i' m)I* (' +m)r* } : (10.8.12)
From here we can use the following identify from the so-called Trace Technology (see Appendix A.1):

Tr(y"9") = 49", (10.8.13)

to evaluate the trace further and express it in terms of momenta and gamma matrices.
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10.8.2 Coulomb Scattering

We want to compute the scattering amplitude for a process of distinguishable particles, such as an electron
and a muon, which interact via the exchange of a virtual photon. The process is given by:

e (p 8)+ (k1) > e (s )+ U (K1), (10.8.14)

which is diagrammatically represented as:

e (p', §) p (K )
q . 4 .
Yy x = 0<f|T{—zeXp/d z Hint(2) }i)o - (10.8.15)
e (p, 5) p(k, )

As we have two different fermionic fields that interact with the photonic field, our interaction Hamiltonian
is given by: B B
Hing = Hine + Hit = —€,0,7"0u Ay — €V Ay (10.8.16)

where we should stress that  denotes the muon field and not a Lorentz index. As we saw, QED vertices
are 3-point which means we need two vertices to connect 4 total external fermionic lines. This means we
need to expand the time-ordered exponential to the second order:

T{-i exp/d4z Hint(2)} = 1 + — [ d*= /d4y T{[ M + Mg } (10.8.17)
In the second term we need to take the mixed term since the squares of either part of the interaction

Hamiltonian will not correctly describe our process but would only describe the scattering of one fermion
with another of its own kind. Thus we need to compute the following:

7Z6 ! I T 1
2P [t [aty om0, )l s IV AT g5 AL e sl (ks )

= () (e (D) () (i o) (10:8.18)

where we took into account that e, = e, = e and that #** = 1/2 as the operators are already in normal
order and we have distinguishable particles, meaning we cannot do « <> y. The additional factor
of 2 comes from the fact that we used the mixed term of the 2nd order expansion of the time-ordered
exponential.

10.8.3 Coulomb Scattering in the Non-Relativistic Limit

As an academic exercise, we can attempt to extract the form of the Coulomb potential from the scattering
amplitude we computed above. First lets remember that in regular Quantum Mechanics we’d evaluate
the scattering amplitude for such a process in the non-relativistic limit as:

Ty =i [t [ @2 i@ V@, (10.8.19)
where V() is the Coulomb potential. Using the QED Lagrangian (10.1.11):

Lqep = @(i’y“D# —m)yp = @(i’y’*@# —m)p — eﬂ’y”Alﬂ/) , (10.8.20)
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we can derive the potential by writing the contraction explicitly and multiplying by ~°:

(i7" 0y —m)p =y Ay
7200t + 7' 0ih) — myp = YA b
i = [—i7"9'0; + my° + ey AL ] ¥
i) = (—iv°7' 0 + mY°) ¥ + V(@ )1, (10.8.21)
where we used 7%9° = 1 and 7°y* = —4%7%. The expression we got is basically the non-relativistic
Schrodinger’s equation i0yt) = [Ho 4+ V (x,t)] 9. Thus we can read the effective potential that is felt by

one charged particle as:
V(z,t) = ey"y"Au(z, 1) . (10.8.22)

In the non-relativistic limit, we can use the fact that v°v* ~ 0 and 7°7° = 1 to simplify the expression
to:
V =eA® (10.8.23)

In clasical electrodynamics, we can get the value of A? as the scalar potential generated by a static point
charge by solving the Poisson equation. In QED this is analagous to using the propagator of the EM
field:

A@) = [ &y Dyl ~ (o) (10.8.24)

where J = p(y). We also already know that both these problems equate to searching for the Green’s
function of the Poisson equation, the solution of which is well known in 3D space:

1
= — 10.8.25
el (10.8.25)
from which it follows that: .
A= — | (10.8.26)
4rr

if we call r = || the distance from the charge. Inserting that into (10.8.23) we get the final form of the
effective potential:

e2

V(z) (10.8.27)

=
This is the Coulomb potential that we were looking for and as we know it from classical electrodynamics.
We can also derive this same result by using scattering amplitudes. For a non-relativistic case where:

p k. p K =0,
u®(0) = v2m (%) ,

a* (0)7u*(0) ~ 2m§1,§s = 2mdsss ,

@ (0)y'u(0) 0,

the scattering amplitude becomes:

iM = (—ie)a (0)y"ul,(0) —22 5 (0)y”us(0)

I PR
9 _Z'gOO ,
= (—ie) (27Tmu)5’7057“7"0 m—p (27m)6v06%¢ .
Using the Born approximation given as:
iM=-V(q) (fli) = =V (g)(2me)(2my) (10.8.28)
we can identify the Fourier transform of the potential as:
~ . 62
Vig) = _Z? . (10.8.29)



Here we need to drop the imaginary prefactor of —i which is a complex phase factor that we inherited
from using QED’s Minkowski-space propagators. Our potential needs to be real. To get the coordinate
space potential we can use the Fourier transform:

d3q ,.€° e?
Vi) — iqe® _ ¢ 10.8.30
() / 3¢ @ x|’ ( )

which is the Coulomb potential we were looking for. We can also very easily see how the sign would
change if we were to consider scattering distinct particles of opposite charge. For example:

e (p,s)+ut(k,r)—=e (,s)+ut (K, ), (10.8.31)

for which the scattering amplitude would be:

I 7 1 _
iMoo (0 1 @ SN A Gy AL e (o i (o (10.8:32)
|
Performing such contractions would yield a pyy = —1 and thus the sign of the potential would be flipped
as we’d expect for the interaction of opposite charges.

10.8.4 4-Photon Scattering

Continuing our set of examples, lets compute the scattering amplitude for the process:

V(p, 8) +(k, 1) = (@', ") + (K, ), (10.8.33)
which is diagramatically represented as:
V(' 8) v(K, 77)
Y z
(10.8.34)
u w
V(p; ) V(k, 7)

It’s evident that if we want to connect 4 external photon lines, we need to use 4 vertices, which means
we need to expand the time-ordered exponential to the 4th order:
[

4, 14 14 14 I X "B Arra '5’I'*' 'T'j s
M /d zdty dtudtw o (PYIN{DRVEs0n Auy ve gy AVEL sy AUl stnAg Hrdo

’ ! 6/ o
< Yap A" (2 = Y)varsr NG (y = u)pyar A (u = w)ys A (w — )
o« Tr[yAp(z — y)vAr(y — w)yAp(u — w)yAp(w — x)] . (10.8.35)
We can see from looking at the spinor indices or simply looking directly at the contractions that py = —1
for any closed fermionic loop due to the anti-commuting nature of fermionic fields. Additionally the

corresponding amplitude for such a fermionic loop always involves a trace over spinor indices of the
product of gamma matrices and the fermionic propagators that appear at the vertices and along the loop.

10.8.5 Yukawa Scattering

We've already solved some example cases for Yukawa scattering in the previously (Chapter 9.5), however
we did not try to extract the effective potential from the scattering amplitude. Let’s consider the same
process of scattering distinguishable particles as for our Coulomb scattering example:

e (p,s)+u (kyr)—=e (o, s)+u (K, r), (10.8.36)
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which is diagrammatically represented as:

e (p, ) po (K, )
y -1 (10.8.37)
6_(]), S) M_(k’ 7")

The scattering amplitude for this process in the non-relativistic limit is proportional to:
—— @ (0)1u(0) . (10.8.38)

iM x gegu it (0)1u7(0)
uty, (0)Luy, ¢ —m?

Again using the Born approximation (10.8.28) we can identify the Fourier transform of the potential as:

. —i

V(q) = 9e9put5——75 > (10.8.39)
lq* + my
which can be Fourier transformed to get the coordinate space potential:
dSq ) Geg e~ Maer
V(z) = aw S = g g —— . 10.8.40
(@) / @) T+ m3 JeIn ™ gy ( )

We see that the potential becomes much more short-ranged the heavier the scalar particle is. Alternatively
if we wanted to consider the scattering of opposite charges we would get the same effective potential
without any sign change. This means that Yukawa scattering is always attractive, regardless of the
charges of the fermions involved.

ff or ff Scattering ff Scattering
Repulsive Attractive
Attractive Attractive

Coulomb

Yukawa

Table 10.1: Sign of the effective potential for Coulomb and Yukawa scattering.

11 Radiative Corrections and Renormalization

11.1 Renormalization Crash Course

Renormalization is a process in quantum field theory that deals with infinities arising in calculations of
physical quantities, such as scattering amplitudes and correlation functions. The main idea is to absorb
these infinities into redefined parameters of the theory, such as masses and coupling constants, thus
allowing for finite predictions of observables.

11.1.1 Lagrangian with Bare Parameters

For a given problem, we start with a Lagrangian that contains bare parameters, which are the original
parameters of the theory before renormalization. Say for example £(e,m) is the Lagrangian of a theory
with a coupling constant e and a mass m, sometimes denoted ey and mg. We attempt to calculate some
physical quantity, such as a scattering amplitude, using perturbation theory, however we encounter a
divergence.
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11.1.2 Regularization

To handle the divergence, we introduce a regularization scheme, which modifies the theory such that
we extract the divergent part. Common regularization methods include:

e Cutoff Regularization: Introduces a cutoff scale A that limits the energy or momentum in the
theory.

e Dimensional Regularization: Extends the theory to d dimensions, where d is not necessarily an
integer, allowing for the separation of divergent and finite parts.

e Pauli-Villars Regularization: Introduces additional fields with large masses to cancel diver-
gences.

In our case we will mostly make use of dimensional regularization, where we will imagine that we
live in d = 4 — g4 dimensions where €4 — 0 instead of d = 4. This will allow us to calculate observables
as a series in €4 ie.:

1
M = E—A—i—ﬁnite terms. .. . (11.1.1)
d

11.1.3 Renormalization Conditions

After regularization, we have a theory with a divergent part. We need to impose renormalization
conditions to define how to absorb these divergences into the parameters of the theory. We will find
that the renormalized parameters are commonly infinite. Popular renormalization conditions include:

e On-shell Renormalization: Fixes the parameters such that physical quantities match experi-
mental values at specific kinematic points (eg. p* = m2,).

e Minimal Subtraction Scheme (MS): Removes the divergent part of the parameters, leaving
only finite contributions.

From this we can then calculate the renormalized parameters and use them to evaluate corrected
diagrams, which will now be finite.

11.2 Feynman Parameters

Feynman parameters are a technique used to simplify the evaluation of loop integrals in quantum field
theory. We will encounter such integrals further in this chapter so lets tackle them here. For a case of
two factors A, B in the denominator we can perform:

1 /1 1 /1 1
— = dz = [ dedyd(lz+y—1)——s, (11.2.1)
AB  Jo T A+ -2)B® Jo ( [zA +yB)?

where we’ve introduced the Feynman parameters x and y. By induction one could derive the following
formula for n factors

1 ! (n—1)!
- = dzidxs ... dx, & x;—1 - 11.2.2
A Ay . A, /0 e (Z ) (2141 + 2245 + -+ 2, A,] ( )
and for n factors raised to the powers m;:
1 ! [T«"' T(my+--+my)
= [ deidas...dz, s -1 i : 11.2.3
ATATE AT /0 B (Zx ) S 2 AJE ™ D(m)...T(my,) (11.2:3)

where T" is the well-known gamma function, defined as:

I‘(z):/ dtt* 7t 2>0. (11.2.4)
0
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11.3 Wick Rotation

Using a Wick rotation we can transform integrals over Minkowski space to integrals over Euclidean
space. Wick rotations are important since we can use them to avoid divergences in loop integrals (as
seen in Figure (11.1)). Note however that the Wick rotation cannot be viewed as a simple rotation in a
complex vector space if that space is equipped with a conventional (Euclidean or Hilbert space) norm and
a metric induced by the inner product. A Wick rotation is not a unitary transformation in an Euclidean
space but rather a complex analytic continuation (a technique used to extend the domain) that changes
the metric signature of the space from a Minkowski signature to a Euclidean signature.

~ VP + A +ic o :

Minkowski Path o VII2+A—ic

Euclidean Path

Figure 11.1: Applying a Wick rotation to the time component of the four-position. The Minkowski path
is transformed into a Euclidean path, allowing us to avoid divergences in loop integrals.

The location of the poles here is not apparent but will become clear when used on an example like in
Equation (11.4.11). To perform a Wick rotation, we replace a component of the four-position with an
imaginary component, most commonly the time component:

t— —iT . (11.3.1)

Another use of Wick rotations is to link Quantum Field Theory to Statistical Mechanics.

11.4 One-Loop Radiative Correction to the Photon Propagator
11.4.1 Regularization

It is possible for a photon to emit and reabsorb a virtual electron-positron pair as it travels through
spacetime. This leads to a loop correction to the photon propagator. The corresponding Feynman
diagram for such a process is given as:

q+k

d — i (q) (11.4.1)

k

where we’ve used the notation I14”(¢) to denote the vacuum polarization tensor (photon self-energy
tensor) such that the corrected photon propagator can then be written as:

D,,°(a) = Dy (@) + Dyp(@)ill5” (9) Do () + - .. - (11.4.2)

As we've seen in Equation (10.8.35), the amplitude for a process that involves a fermionic loop contains a
trace over spinor indices of the gamma matrices and the fermionic propagators. Performing the necessary
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Wick contractions to form the loop introduces a factor of pyy = —1. In our case, the amplitude for the
photon self-energy correction is given by:

. d*k oy i(E4m) o ik g4 m)
5" = (71)/ (27T)4Tr (—iey )7162—7712—1—2'6(7267 )(k+q)2—m2+i5
.\ d*k m2g" + k*(k Y+ kY (K v— gk (k
— ()1 ie)? [ gy P PRl D 1)

where we used various Dirac trace identities to systematically evaluate the trace (see Appendix A.1).
From here we will denote our numerator and denominators as:

NM = m2g" 4k (k + q)” + kY (k4 )" — g"k - (k+q) , (11.4.4)
A= (k+q)?—m?+ie, (11.4.5)
B=k —m?+ic. (11.4.6)

This situation is precisely one in which we can use Feynman parameters to simplify our integrals as
we’ve seen in Equation (11.2.1). Using a Feynman parameter 2 we can see that the denominator can be
rewritten as:

D=x(A-B)+B=x(k*+2kq+q> —m® +ic — (k> —m? +ic)) + k* —m® +ic
= k% + 2xkq + ¢*x — m? +ic
:[k+xq]2—q2x2+q2x—m2+ie

= [k +2q)® — [m? — 2(1 — 2)¢?] +ie, (11.4.7)

From here we will call:
P =[k+xzq?, (11.4.8)
Ag,z) =m? —z(1 — )¢, (11.4.9)

with which we can rewrite (11.4.3) as

d*k N#v
ALY = —462/ o (11.4.10)
(2m)A 12 — A + ie]

We’ve now encountered an issue with the integral, since it is divergent when integrating over I°. To resolve
this, we will perform a Wick rotation (as seen in Figure 11.1) to transform the integral into Euclidean
space. If we separate the temporal and spatial components we can see where the poles are:
P—A+ie=Z+1*—-A+ic
= [1I0— (B, —ie)] [I°+ (BEy —ie)] , (11.4.11)

where F; = /|l]> + A. This places the poles as demonstrated above in Figure 11.1. To perform the
Wick rotation we will replace the temporal component:

1°=4l9 , (11.4.12)

where 19, is the Euclidean time component. With this we’ve shifted k¥ = | — gz with A that is not
dependent on [. This is important since it centers our integrand and makes the use of symmetry possible.
To be extremely explicit, the denominator changes as follows:

1 N 1
12— A+iel  (=1)(-1)[Z+ A

where one minus comes from the Wick rotation and the other from the Minkowski metric signature

(11.4.13)

converting 1% = (1°)2 — [1]2 = (il%)? — |I|> = —I%. Our integral transforms to:
dl N#v
iy = / dz z/ dig, f (11.4.14)
F+M
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We need to use a couple of tricks to simplify this integral in Euclidean 4-space, even though we will only
illustrate its result and not fully solve it initially. First of all, make note that any odd integral over the
Euclidean space will vanish, ie.:

/d4lE ILE(1%) =0, (11.4.15)

where F(1%) is any function that is even in . This means that any linear term in [ integrates to zero
after performing the shift and Wick rotation. Quadratic terms in lg will not vanish, however, and we
can use the fact that:

1
/d4lE LG F(1%) = Z(W/d‘*lE 12F(1%) . (11.4.16)
Our previous numerator can be rewritten as:
N# = 2MY — " 1> 4+ {—22(1 — 2)¢"q” + g"'(m* + z(1 — 2)¢*) } + (terms linear in ). (11.4.17)

Written this way we can apply the previously mentioned tricks to the numerator. The whole integration
process is a tad bit involved so we will skip the integration of the numerator and focus on the final result.
We can substitute the spatial integral in Euclidean space with a spherical integral:

/dl = /ng/dl 2, (11.4.18)

where d23 is the solid angle in three dimensions, to obtain:

v dQ4dlE 13,
ALY o -+ - — de? / dx/ / (G + A (11.4.19)
If we were to integrate this straight away we’d encounter the very well known UV divergence:
< q -
:/ £ = il =c. (11.4.20)
e lE -

To avoid this divergence we will make use of dimensional regularization. We’ll imagine that we live
in d = 4 — ¢4 dimensions, where €4 — 0, which will allow us to calculate the integral as a series in g4.
The problem we need to solve is:

0 4 NHY
ZHMV — _4ie? / dz / d lE 5 (11.4.21)
— A +ig]

which we can rewrite as an integral over 4 — ¢4 dimensions as:

d d—4 pnv
ALY = —4ie? / dx / d l M [ ]i . }2 , (11.4.22)
—A+ae

where M is a mass scale that we will use to keep the dimensions of the integral correct. If we also want
to modify the numerator accordingly we need to modify Equation (11.4.16) to:

[ et = [ oo ), (.42

with which we can now rewrite our numerator as:

2
NEY — gg“”(—l%)—kg’wl%+{-.-}+~-~ , (11.4.24)

where the (—(%) comes from the metric signature conversion. Now we can use the previously solved
integral from Equation (11.2.3) to rewrite our integral part as:

fantoiet (]

4m)
A - [A] caem. 1.4.2)

It
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where we’ve made use of the Gamma function property that nl'(n) = I'(n+1). Finally, we get the result:

STTHY . 2 ld M47dr(2_g) Agtv oV yng 2 2
1Y = —die /0 T am)i2  po-d (—Ag —|—{—23:(1—x)q q" + g (m* 4+ x(1 —x)q )}), (11.4.26)

which after some sweat and tears can be simplified to:

1 ?‘[47d d
. v o__ . 2 2 2 v 1
TIEY = —die /O da G A 22(1 — 2)(%g"™ — ¢"¢") . (11.4.27)

We can check that the Generalized Ward Identity holds for this result:
@115 o< q,(¢°g" — ¢"¢") = ¢’¢" — ¢°¢" = 0, (11.4.28)

where I remind the reader that g*” works sort of like a Kronecker delta but also raises the covariant index
to a contravariant one. If we focus again on the integral part of our result we can finally do d — 4. If we
take a look at the mass scale M we can now apply the limit:
A —84/2
< ) . (11.4.29)

A7 M?

L re-9)  rE)

M4—d
@ma? a1 ()

So the important part is the following limit:

lim a2 =1— —Ina. (11.4.30)

Ed —0 2

The value of the Gamma function in the limit is:

Ed - 2
r (5) = —mm +0lea), (11.4.31)

where vgp ~ 0.577 is the Euler-Mascheroni constant. Applying these limits to Equation (11.4.29)

we get:
. 1 Ed A 2
lim — (1-—In|——= — -
53510(4@2( 2 n[zmw]+ >(€d et >

1 2 A
= ()2 <€d —1In W VEM + 1n(47r)> . (11.4.32)

This is the result of the regularization procedure. We can pack it into a final expression as:

iy = i(q*g" — ¢"q")L2(¢%)
4ie?  [* ) A
- _(471')2 / dz 2z(1 — z) (5(1 - IHW —YEM T 1n(47r)> (*g" — ¢"q") , (11.4.33)
0

where TI(g?) is the scalar part of the vacuum polarization tensor.

11.4.2 Renormalization

The next step is to renormalize the photon propagator. We will do this by defining renormalized
parameters e and Mp and relating them to the bare parameters ey and My. The corrected photon

propagator can then be written as:
+ + T, (11.4.34)

or explicitly as in Equation (11.4.2) for the one-loop correction:
D2°°P(q) = Dy () + Dy ()57 (9) Do (@) + - - -

719 v 71‘91 . o o 71‘9(71/
= TR @ - ()] = (11.4.35)

D;:ﬁjrrcctcd (q) _
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where I15(¢?) is the vacuum polarization tensor from Equation (11.4.33) without the tensor part (¢?g* —
g"q”). Since the Ward identity imposes that terms proportional to ¢* vanish we can rewrite the photon
propagator as:

-loo _igV
D% (q) = qz“ [1+ 2 (¢?) + 13(¢?) + ... ]

_'g v = n
= qzﬂ ZHQ(q2)

n=0
—iGu 1
= , 11.4.36
¢ 1-1lx(¢?) ( )
where we’ve used the geometric series sum:
= 1

"= 11.4.37
nzz:om 1 —r ’ ( )

to rewrite the propagator in a more compact form. Photon mass is related to the position of the pole of
the propagator, thus we want m., = 0 thus a pole at ¢*> = 0 for a real photon (this way the propagator
is the Green’s function of Maxwell’s equations). Fortunately this condition is automatically satisfied due
to the Ward identity:

¢*(1-12(¢*))| =0. (11.4.38)

q?=0

Let’s expand the propagator as a series in II5(g?) when ¢ ~ 0:

1-loop _ —igu _ —iguw
D0 = BA T, ~ 0 Thale) - H2(0)] — Th(0))
N —iGu0 1
= PO ()~ L) - 150)
— v Zs, (11.4.39)

—g?(1 - [Mz(g?) - T5(0)))
where we have defined the EM field-strength renormalization Z3 as:

1

Zy=— .
T 1-11,(0)

(11.4.40)

This factor Z3 includes both the tree order and the one-loop correction to the photon propagator. If we
want to explicitly see just the one-loop correction we can write:

673 = Z3 —1 = —TI,(0) . (11.4.41)

We will get the evaluated value of II5(0) after we perform the renormalization procedure for the ver-
tex correction (see Equation (11.6.49)), from which we will derive the relation between the bare and
renormalized charge. Using that we will also be able to write the finite renormalized version as:

M2, k(%) = Ma(q®) — T15(0) (11.4.42)

which is why it will be used in the denominator of the propagator. With that the renormalized photon
propagator can be written as:

—igh" Zg —ighv

diz (QIT {A*(2)A*(0)} Q) = +0(et) = , 11.4.43
[t (QUT (44 @) 4O} 19) = e + O o (11.4.43)
or if we prefer to use the renormalized photon field A%, = Z3 1/2 gu,
—ighv —ig™
dia (QIT {Al(z) A%(0)} Q) = K +O(et) = -2 11.4.44
f dta QIT AR@AROM9) = ey + O (0 a4y
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To clear up confusion, these two are identical. It’s only a matter of where we put the Z3 factor is placed
and bookkeeping:

M (g) = - (1 - [Male?) - T2(0)) + O(eY). (11.4.45)
r%()z 2(1 - [Ma(q?) — <>]>+0< Y obut A =2z;1%4m (11.4.46)

= T%4(q) = VZs\/ZsTP (p (11.4.47)

F(WQ) (p) is only called bare since it contains the bare mass mg and charge ey even though it is fully dressed
with the one-loop correction. For posterity lets repeat the renormalization conditions in terms of I'(?):

'L (¢*=0)=0, (11.4.48)
ar(2
VR 2
=0)=1. 11.4.49
¢ (¢°=0) ( )

11.5 One-Loop Radiative Correction to the Electron Propagator
11.5.1 Regularization

During travel an electron can emit and reabsorb a virtual photon, leading to a loop correction to the
electron propagator. The corresponding Feynman diagram for such a process is given as:

p—k
1 v = i%s(p) (11.5.1)
p

where we’'ve used the notation ¥5(p) to denote the electron self-energy such that the corrected mo-
mentum space electron propagator can then be written as:

AFP(p) = Ap(p) + Ar(p)(—iZ2(p)) Ar(p) + Ar(p)(—iD2(p)) Ar (p) (—iZ2(p)) Ar(p) +

o0

= Ap(p) Y [(=i%2(p)Ar(p)]" (11.5.2)

n=0
Using our knowledge of Feynman rules we can write the electron self-energy as:

. ) d*k i(f+m) —ig
— (_ 2 H v j2id
a(p) = (~ie) / (277)47 K2 —m2 +ic | (p— k)2 +ic’ (11.5.3)

where we note that we’ve evaluated the amputated Feynman diagram (ie. without the external legs).
This can be rewritten in d dimensions as:

iSa(p) = (—ie)?M [

Contracting the photon propagator yields v#g,,v" = v*~, with which we can then act on § as described
in the Gamma matrix identity from Equation (A.1.7) to obtain —(d — 2)§. With this the self-energy can
be rewritten as:

Ak i(f+m) L, —igw
V. 11.5.4
2m)d k2 —m2 i | (p—!f)Q—l-is’y ( )

d?% i [—(d — 2)F + dm) —i
2m)d k2 —m?+4ie  (p—k)?+ic’

IS (p) = (—ic)2MA— / : (11.5.5)

Now we can use a Feynman parameter = (as in Equation (11.2.1)) to rewrite the denominator:

1 1 ! 1
3 O, S, :/ dx - _ 5
k2 —m2+ic(p—k)?2+ic g (k2 =m?2 +ie)(1 — x) + (p? — 2pk + k2 + ie)x]

1
:/ dz —
(k- px)2 A + ig]

/d AHS} , (11.5.6)
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where we have defined | = k — pz and A = p?(z? — 2) + m?(1 — x). Now in a similar manner to the
photon self-energy we can rewrite the self-energy as:

. Cw ! Al —(d=2)(] +zp) +dm
i¥2(p) = (—ie) /0 dw/(%)dM TERAE : (11.5.7)

Next we perform a Wick rotation to transform the integral into Euclidean space, just as we did for the
photon self-energy.

—(d = 2)zp+md
—1)(=1) (1% +A)°

1 d
d®l
i¥a(p) = i(—ie)Q/ dx / Ed MAd (11.5.8)
0 (2m) (
where we have used the fact that [ = —[% in Euclidean space and that the denominator changes as in

Equation (11.4.13). The [ term vanishes after the Wick rotation since the integral over an odd function
in Euclidean space vanishes, like so:

1
/ddlE [F(1%) = /ddlE wEﬂm =0. (11.5.9)
E

Now using the result from Equation (11.2.3) we can rewrite the integral as:

iSo(p) = —ie? /1 da [M4_dml)gz/2r (2 — g) (i)2g] (—=(d—2)xp +md) . (11.5.10)

0

Finally, we can take the limit d — 4 and apply the same tricks as in the photon self-energy case seen in
Equation (11.4.32) to obtain:

1Xa(p) = _(jjTe)?/O dzx (fd — ln% —vEM + 1n(47r)> (4m — 2zp) . (11.5.11)

11.5.2 Renormalization

After regularization we can proceed to renormalization. Our experiments always measure the fully
dressed/corrected vertex or propagators. We need to relate the bare parameters of the theory myg,eg
to the physical renormalized parameters mg, eg that we measure in experiments. The bare parameters
are just parameters of the Lagrangian that we use to describe the theory and do not need to correspond
to the measured mass or charge. Moreover, if we keep such parameters finite, we will run into divergences
when calculating observables. We’d like to have:

2

en 1

B 11.5.12
4w 1377 (11.5.12)
mpc = 0.511 MeV . (11.5.13)

Using an on-shell renormalization scheme the renormalization conditions require that the corrected
electron propagator has a pole at p? = m% (same as p=m r) and that the corrected vertex is related to
the measured charge (—iegy*). In general ¥ is given by the sum of all one particle-irreducible (1PI)

diagrams, which are diagrams that do not divide into two separate parts if one line is cut:

~i2(p) = =Pl
A W % N & R (11.5.14)

We've calculated the one-loop correction to the electron propagator in Equation (11.5.11) for which
> = ¥5. The corrected electron propagator can then be written as:

A?rrected(p> — < + + + ..., (11.5.15)
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or explicitly for the one-loop correction as stated in Equation (11.5.2):
AFP(p) = Ap(p) + Ap(p)iSa(p)Ar(p) + Ar(p)(—iZ2(p) Ar(p)(=iSa(p)) Ar(p) + - -

(—i¥2)

"
PR

<
\

3

<
|

3

=
|

3

<
\

<
|

3

(11.5.16)

where we've used the sum of a geometric series from Equation (11.4.37) to rewrite the propagator. Since
Y5 is infinite, m is obviously not the physical mass of the electron. As stated in Equation (11.5.13) we
want the corrected propagator to have a pole at p? = m% (which is the same as p=m r). Thus:

p—m— Ea(p.m) =0, (11.5.17)

p=mr
from which we can derive the relation between the bare and renormalized mass:

mR—mo—Eg(mR,m) =0 = mRzmo—l—Eg(mR,m), (11.5.18)
Now we can expand the propagator for when p ~ mp in terms of (p —mg):

1

AFP(p) = 5
—mg — Yg(mg,m) — o~ (p —mr)
p 6p p=mn p
o 1
p—mr 1 22
ap p=mgr
)
- Zs, 11.5.19
p—mn 22 ( )

where we have defined the electron field-strength renormalization Z, as:

1
Zy = s (11.5.20)
1- 2=
ap pP=mr
This means that the renormalized electron propagator is given by:
— i 7o i
Az QT 1) (0)) Q) ~ —22— + O((p — mp)?) = , (11.5.21)
[t QT o) ) ~ S0l e
or if we prefer to use the renormalized electron field Yp = Z, 1 21/):
e (QUT {Yr(2)Pr(0)} Q) ~ O —mr)?) = —— . (11.5.22)
/ pm )

Just as with the photon propagator, these two are identical. It’s only a matter of where we put the Zs
factor is placed and bookkeeping:

r®(p) = Z%(p—m}z) +O((p—mr)?), (11.5.23)
T®.(p) = p— mr +O((p —mp)?) but vr=2""p, (11.5.24)
= T2h(p) = 22/ 22D P (p) (11.5.25)

91



1“9 (p) is only called bare since it contains the bare mass mg and charge ey even though it is fully dressed
with the one-loop correction. Its name is purely a bookkeeping choice. For posterity lets repeat the
renormalization conditions in terms of T'(®):

I (p=mg) =0, (11.5.26)
ore),
op
11.6 One-Loop Radiative Correction to the QED Vertex
11.6.1 Regularization

(p=mg)=1. (11.5.27)

The one-loop radiative correction to the QED vertex is a bit more involved than the previous two
examples. The corresponding Feynman diagram for such a process is given as:

= (—ie)ol"(p,p'), (11.6.1)

where we’ve used the notation dI'* to denote the one-loop vertex correction such that the corrected
QED vertex can then be written as:
I =A# 4 6TH . (11.6.2)

Since I'* must be a Lorentz 4-vector which is sandwiched between two Dirac spinors (%(p’) and u(p)) the
most general form of the vertex, that is still consistent with Lorentz invariance, is:

oude

I(p,p') = Fu(@)v" + Fa(q?) + B3(q®)g" + Fa(@®) (P +my + ... (11.6.3)

2m

TODO: Paragraph Needs FIX In principle this vertex decomposition could contain any term that is
a Lorentz 4-vector, however lots of these terms can be eliminated by the fact that the QED Lagrangian
is invariant under CP transformations (Charge conjugation and Parity transformations):

Pt x) 2 i CPT (t, —a) (11.6.4)

where C' is the charge conjugation matrix and P = ~° is the parity operator. This means that the vertex
must also transform such that electromagnetic current J# is invariant under such transformations:

JH = YTty (11.6.5)

which adds additional constraints on the form of the vertex. For example it is not possible to have a term
of the form 757, since 75 changes parity behavior meaning that Pysy*p transforms as an axial vector
which does not change sign under parity transformations. Such a term would then violate CP-symmetry
of the electromagnetic current J#. Terms proportional to p* or p’# without gamma matrices are not al-
lowed since while they are Lorentz 4-vectors, they cannot form proper vertex operators on Dirac spinors.

The above general form can be further simplified by the fact that for on-shell external fermions the free
Dirac equation holds true, thus:

(p —m)u(p) =0, (11.6.6)
a(p')(pf —m)=0. (11.6.7)
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Applying the Ward-Takahashi identity (see (10.3)) we get:
¢"TH(p,p') = AR () = AR (p) = [ —m —Z(@)] — [p—m —Z(»)] , (11.6.8)

where ALl (p) = [p —m —X(p)] is the inverse of the full/dressed fermion propagator and Y(p) is the
fermionic self-energy. This means that for a properly renormalized vertex it must hold that:

u(p ) AR () =0, (11.6.9)
Az (p)ulp) =0. (11.6.10)

In turn that ensures that the following holds:
a(p')g. " (p,p)u(p) =0, (11.6.11)

which means that any terms that are linear in ¢* will vanish (ie. there are no longitudinal terms).
Terms containing ¢? will not vanish, however, for in scattering processes we usually consider an on-shell
incoming photon with ¢ = 0. This does not exclude functions of ¢? like the form factors F(q?). With
all this in mind the general form of the vertex is simplified to:

ot q,

T*(p,p') = Fi(*)" + Falq®
(p:p') = Fula" )" + Fala7) — =,

(11.6.12)

where F1(g?) and Fy(q?) are the Dirac and Pauli form factors respectively (for more details see [2])
and 0" = L[y*,+"] is the commutator of gamma matrices. The Dirac form factor F(¢?) is related
to the charge of the fermion and is usually Fy(0) = 1. The Pauli form factor Fy(q?) is related to the
anomalous magnetic moment of the fermion, which is usually F»(0) = a = (g — 2)/2, where g is the
gyromagnetic ratio of the fermion.

We can write the diagram using the Feynman rules as:

d*k i) [(F+d) +mlul) |, ik+m) ,  —ig, (11.6.13)

(o " — (_ip)3
T u(p) = (ie)? [ oy e L o T Lo e

where this expression corresponds to the amputated diagram (ie. without the external legs) but we've
manually added the external contractions for fermions, which will become relevant later. We can expand
this to:

(! I . dk ﬂ(p/) k’yuk/ + m2fy“ — Qm(k + k/)u u(p)
u(p")oTHu(p) = 2262/ 2m)% (k — p)2 + ie) (k> — m2? + ie) (k% — m? + ie) ,

(11.6.14)

where we have defined k' = k 4+ q. We can now use 3 Feynman parameters x,y, z as in Equation (11.2.2)
to get to:

1 ! 2
= drdydzé —-1) — 11.6.15
(k= P2+ ) (k% —m2 + i) (k2 —m? + ie) /0 vdydzd(@+y+2-1) 55, ( )
where the denominator D is defined as:
D =z(k* —m?) +y(k* —m?) + z(k — p)? + (x + y + 2)ie
= k% 42k - (yq — 2p) + y¢* + 2p* — (x + y)m? +ic, (11.6.16)

and where we’ve used the fact that x + y + z = 1 to simplify the denominator. To find the complete
square we need to shift k to:
l=k+yqg—2p. (11.6.17)

We can write the denominator in the standard form for Feynman parameters D = [? — A +i¢ if we define:

A= —2yq® + (1 — 2)*m?. (11.6.18)
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Using symmetry identities for integrals in Euclidean space (Equations (11.4.15) and (11.4.16)) we can
rewrite the numerator as:

NF =a(p) [,}67“}6/ + m2y* —2m(k + k’)“} u(p) (11.6.19)

I
2

(") [;7”2 + (—yg + 2P (1= y)d — zp) + m>y* —2m ((1 - 2y)¢" + QZP“)} u(p) .

With quite a bit of algebra and manipulation we can rewrite the numerator as:
1
N =u(p') [7# . (—212 +(1—2)(1—y)g®> + (1 -2z — z2)m2)
+ (" ) ma(z = 1)+ g mlz = 2)(x - y)| ulp). (11.6.20)

Next we can use the Gordon identity:

N o [Pt i,
U(p’)v’u(p)zu(p’){ 5 T | WP (11.6.21)

which stems from the fact that the Dirac equation holds for both u(p) and @(p’), to replace the (p’ + p)
term with one containing ¢#”¢q,. Thus our entire expression becomes:
dl
—r ! 0.2
a(p')oT u(p) = 2ie / )

where N* is given by Equation (11.6.20) and the denominator D is defined as above:

! 2N
/ dedydzo(r+y+2—1)—= (11.6.22)
0

D3’

D=01%—-A+ie
= (k+yq—2p)* — [~2yg® + (1 — 2)*m?] +ic. (11.6.23)
Instead of using dimensional regularization like we did for the previous two examples, we will use Pauli-

Villars regularization to regularize the integral. Before we can do that, however, we need to perform
a Wick rotation to transform the integral into Euclidean space over 4-dimensional spherical coordinates:

x = (rsinwsinf cos ¢, rsinw sin § sin ¢, r sinw cos 6, r cosw) , (11.6.24)
d*z = r®sin® wsin dr dw df d¢ , (11.6.25)
Q4 = sin® wsin fdr dw df do , (11.6.26)
dUlp = 13dlpdQy, (11.6.27)

where d€)y is the solid angle in four dimensions, whose integral is 272. Now after performing the Wick
rotation {° = il%, we need to evaluate an integral of the form:

a1 i " 1
/ emip—aP ~ ()@ / Y rar
i > Iy
gAY e

— 72 . 2 —_—
S CPet T 1A T oA (11.6:28)

where we’ve rewritten the integral in spherical coordinates in the second line. For a general power m of
the denominator, this integral can be evaluated as:

d4l 1 i 1 1
/ (2m)4 [I%2 — A]m - (—1)™(2m)* (m — 1)(m — 2) Am=2 (11.6.29)

We also will need to evaluate a similar integral of the form:

av =t 2 1
/ (271’)4 [12 _ A]WL B (47’()2 (m _ ]_)(m — 2)(m — 3) Am-3° (11630)
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where we've again used m to mark the power of the denominator. As we can see, this integral diverges
for m = 3 and thus we will need to regularize it. To do so using Pauli-Villars regularization we
will return to the original expression for the vertex correction and add a massive term A to the photon
propagator:
1 1 1

(k—pPtic  (h-pPtic (k—p? A tic’
Here A acts as a very large mass which will not affect the integrand for small k, but will smoothly cutoff
when k approaches A. We can effectively imagine the second term as the propagator of a fictitious heavy
photon. Taking this change into account our numerator stays the same, however A in the denominator
of the second term changes to:

(11.6.31)

A = Ay = —zyg® + (1 — 2)°m? 4 2A%. (11.6.32)

This way our divergent integral from Equation (11.6.30) becomes:

/ a4 2 o /°° iy BB
eI\ 2—AF -aa) @ S C N\ B LAP 12+ AN
. 2 [es} 2 2
= 27’77(4/ dlg ZSE ZE s — lE =
(2m)* Jo 12+ A7 12+ Al
Um? Jo P\ +A° [+ A7

_ M%)an (if\) 7 (11.6.33)

where we used a integration parameter swap t = [, where [%dlp = (tdt)/2 in the third line. With the
addition of A the integral that was already convergent is now modified with terms of the order A~2, which
we can ignore since we’re interested in the limit where A is large. Now we can finally write the explicit
expression for the one-loop vertex correction using the evaluated integrals from Equations (11.6.28) and
(11.6.33):

1
ﬂ(p/)(sr“(p,p/)u(p) = g/ dzdydz (5(3: +y+z— 1)
0

o
x u(p') (w {m ZTAQ + % (L=2)1—y)g* + (1 -4z + 22)m2)}
iaz";qy [iszZ(l _ Z)D u(p) | (11.6.34)

where we have used the fact that o = e2/(4m) is the fine-structure constant. The form factors F;(¢?) and
F3(q?) can then be read off from the above expression as:
ZA%2 1

Fi(¢*) = / [1nA +3 (1—2)1—y)¢* + (1 —4z+ z2)m2)] : (11.6.35)

Fy(q®) = / [i2m2z(1—z)} : (11.6.36)

Unfortunately we run into trouble if we want to evaluate F(q?) since we have an infrared divergence
when ¢?> = 0. There are ways to deal with this. Peskin introduces a small non-zero mass yu to the
denominator of the photon propagator, however I don’t think going through that is necessary here.
Instead we can evaluate Fy(¢?) at ¢> = 0 to obtain the anomalous magnetic moment of the electron,
which is unaffected by both the infrared and ultraviolet divergences:

2m?z(1 — 2)

1
F2=ozﬁ/ddd5 1
2(¢° =0) = 5 | dedyde (z+y+= )(1_2)2m2
1 1—z
1
:g/ dz/ dy SE
s 0 0 1—Z 7T2
- 23 ~ 0.00116 . (11.6.37)
™
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This is the famous anomalous magnetic moment of the electron, for which Julian Schwinger received
the Nobel Prize in Physics in 1965. Schwinger passed away in 1994, however this discovery was so
important that it remains engraved on his gravestone.

11.6.2 Renormalization

Again, now that we’ve regularized the vertex correction we can proceed to renormalize it. The one-loop
corrected vertex can be written as:

a(p )T+ (q)u(p) = a(p’) [(—ie) {y* + oT*(q >~» % (11.6.38)

Using what we’ve learned from the previous two examples we can write the renormalized vertex by
guessing the way we renormalize n-point gamma functions (we will do this explicitly later):

T (q) = \/Za\/ 227/ ZsT @ (q)
~VAVEVE (i {ra+one) + G R ] (11.6.39)

where we used Equation (11.6.12) to rewrite the vertex in terms of the form factors §F(¢?) and Fy(q?).
Since 0 F(q?) is infinite the bare three-point function I'®)>#(q) is also infinite. The renormalized version
has to be finite and related to the measurable charge er. Therefore we impose a renormalization condition
on the vertex which states that the charge at low energies (ie. ¢ = 0) has to be the measured charge eg:

. e2 1
R (a=0) = (e

=—. 11.6.4
dm 137 (11.6.40)

This renormalization condition will give us the relation between the bare and renormalized charge which
has been missing up until now. From the condition we can derive:

F(B)’H [ Zy\) Zon) Zs(—ie)y" (1 + 6F1(0)) , (11.6.41)

where F5(0) = 0 as it is not divergent. Lets take a look at the perturbative correction to Z;. The
a-order correction is §Zs = (Z3 — 1). Having calculated this before we can explicitly try to evaluate this
correction:

dx
57, = 22
dp p=mr
1 2 2
a zA z(1—z)m
d | 2(2 — 11.6.42
T or x[ xn(l—x)2m2+xu2+ ( z)(1—30)27712—1—%@2} ’ (11.642)

if we would have gone through the regularization procedure with both p and A. If we were to do this
also for 0F(0) we’d arrive at the expression:

1 2 2Y,2
! zA (1—4z42z°)m
0F(0) = — dz (1— 1 , 11.6.43
1(0) 277/0 2(1-2) {n(l—z)QmQ—&—qu—’_(1—z)2m2+z,u2} ( )
from which it can be shown via integration by parts that:
0F1(0) = =627, (11.6.44)

I apologize for the hand-wavy derivation, but fully explaining this would take too long and is not even
really a part of this course directly. Simply put, this is another consequence of the Ward-Takahashi
identity. Taking this into account we can calculate the following:

Zo(146F1(0)) = (1 +6Z2)(1 4 6F1(0)) =14 6Zy + 6F1(0) + O(e*) =1, (11.6.45)
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with which we can simplify the renormalized vertex to:

T4 (q) = \/Zs(—ie)y* . (11.6.46)
In literature it is common to denote the vertex correction by Z, defined as:

1

= —
YT 14 6F(0)°

(11.6.47)

which is in our case equal to Z5. This means that the correction to electron legs cancels out the vertex
correction and that the remaining renormalization condition for the charge is simply:

ER = de . (11.6.48)

This means that the bare charge e has to be infinite in order to ensure a finite renormalized charge
er. Now lets call back to the photon self-energy Il(¢?). With the renormalized charge we can write
I2(¢* = 0) as:
2ap | 2 m2
=-—=|=—-In—*2 - In(4 11.6.49
6 |:Ed e Yem +In(dm)| ( )
where ar = €%/(47) is the renormalized fine-structure constant. Likewise, as we've said before, the
renormalized photon propagator is then given by Equation (11.6.50), which can be explicitly written as:
1

2
2apr mp

H2,R(Q2) = H2(q2) —TI5(0) = — dz z(1 —z)Iln

11.6.50
T Jo m% —x(1—x)¢?’ ( )

which is now independent of ¢4 in the limit £; — 0. This means that the renormalized photon self-energy
is finite as we use Ilz(q? = 0) to subtract the divergent part.

11.7 Observable Consequences
11.7.1 Example: Electron-Muon Coulomb Scattering

Lets take another look at the electron-muon Coulomb scattering process, which we’ve already discussed
earlier (see Section 10.8.2). The process is given by:

e (p,s)+pu (k,r)—e (), s)+pu~ (K, ). (11.7.1)

There we've already calculated the scattering amplitude in the tree order. Now using our one-loop
corrected vertex let’s evaluate the scattering amplitude to the order of O(e?). The scattering amplitude
we want to evaluate is:

iM = [\/ﬁr >:< . (11.7.2)

We'll ignore the second term for now, despite it being of the same order, since it is not relevant for finding
the change of the central Coulomb potential static term (which gives a 1/r dependence). The first term
with one-loop corrections is:

iﬁhPﬁ%ZﬂQMﬁXw)Pﬂﬂ+5Fﬂf)MT@D+5Fﬂ®+iJW%W§@%]Mm

2me
v
) (ie) |30+ OFL ()~ SFL(O) + 5P (0) + i L P )| uth)
m
_iguu ZS

* P01 — [M(g?) — TL(0)])

(11.7.3)
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where we’'ve used the corrected vertex and corrected photon propagator. Using, the relations we’ve
derived earlier:

Zy(1+ 6Fy(0)) =1, (11.7.4)
Zze? = e% | (11.7.5)

we can simplify the amplitude to:

(LY
Reiaiat7 it e

iM = () (—ier) [7“(1 L OFE () — OFF(0)) +i 0 de <q2>} u(p)

QmRC

oV
) (ier) |31+ SFP() = R 0) + i LR () )
_iguz/
¢*(1 — [M2(q?) — T2(0)]) -

Using the same trick in the non-relativistic static limit where ¢° ~ 0, we can use the Born approx-
imation, as we did in Section 10.8.3, to extract the Fourier transform of the new effective interaction
potential:

X

(11.7.6)

v () —ie%
)= 57 1 a2y
¢*[1 - r(¢%)]
which we see has gained a correction term in the denominator compared to our tree order effective
potential from Equation (10.8.29) which is called the Uehling correction. Remember here that the —i
factor is manually removed before the inverse Fourier transform as it is an artifact of bookkeeping. Our
potential needs to be real. Earlier we skipped the second box diagram, which if we’d evaluate, we’d come
to find the full Breit potential [3] which includes spin-orbit and spin-spin interactions alongside the
Uehling correction.

(11.7.7)

11.7.2 Example: Lamb Shift

The Lamb shift is a small anomalous energy shift in the energy levels between the 2s;,, and 2py s
electron orbitals in the hydrogen atom. We can calculate the expected value of the Lamb shift using the
Uehling correction to the Coulomb potential from Equation (11.7.7). It will be practical to write the
potential as a series expansion in ag:

2

- e2 e
b [ ) + O] (11.78)

V(g = ————"2——=

¢* [1 —Tl2,r(¢?)]

Note: We've manually removed the 4 factor from the denominator, as it is an artifact of bookkeeping
with Feynman diagrams and changed the sign to get the potential between opposite charges as we expect

in the hydrogen atom. Our previous expression in Equation (11.7.7) was derived for two like-charged
particles.

Performing an inverse Fourier transform on the Uehling correction term:

- e
V(g) = —q%Hz,R(q2) : (11.7.9)
yields the familiar Uehling potential [4]:
202 1 [ 1 t2—-1
SV(ry=-"L2 [ dpem2melrt) (14— ) 2 11.7.10
=5 /1 ¢ top) T ( )

For our purposes 5‘7(q) is sufficient though. Let us expand the photon self-energy Ils r(¢?) in the
non-relativistic static limit |g|? < m%, ¢° = 0, as a series in |q|?/m%:

20éR

L — lal?) ' q> lq|? lq*
2.r(¢° = —|q|*) ~ drz(l —z)z(l —2)—5 = —-Aap—5 +O0 | — | , (11.7.11)

T Jo mpg mp mp
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where A is some proportionality constant and we’ve made use of the series expansion of the logarithm:

2 2
In (1+|‘1|2) :%+.... (11.7.12)
Mg mp

Plugging in this approximation into the momentum-space Uehling potential we get:

5V (q) ~ R popldl _ 2 y0n (11.7.13)
— T T A - a — R I P} . .
lq? Ty mi

where we see that what we get is a momentum-independent constant in momentum space. The
inverse Fourier transform of a constant is a delta function. Were we to also properly perform the integral
in Equation (11.7.11) such that we explicitly calculate A = 1/15, we would find that this coordinate-space
potential is:

SV (r) = —iai?a(?’)(r) (11.7.14)

15 m2, : 7.

Now remember that hydrogen s states (when [ = 0) have a non-zero probability density at the origin:

1 /1\?
Pn00(r) = —= <> e/ (11.7.15)
Vmag \T

where ag = (agmp)~! is the Bohr radius. While it’s p states (when [ # 0) are suppressed as 7 — 0. This
means that p are not affected by the aforementioned delta function, while s states are. The Lamb shift
is the difference in eigenenergies between the 2s, /5 and 2p; /o states, which can be calculated as:

4 a2 alm?
A = [ €1 noo(r)6V(r) = 4V O (O)f = — 5 22 2
=-1.123-10"" eV, (11.7.16)
where |’¢2’0’0(0)|22 5
1 (agmpg)
[200(0)F = g = 2 (11.7.17)
0

This result only captures the vacuum polarization contribution (Uehling correction) to the Lamb shift
which is in general much larger at ~ 4.4 -107% eV due to the electron self-energy which dominates.

11.7.3 Example: Running Coupling Constant

Another interesting consequence of the one-loop vertex correction is the running coupling constant
which is effectively the same story as with the Lamb shift except where we reinterpret the Uehling
correction as a renormalization of the charge itself. We can expand the logarithm term in the photon
self-energy (vacuum polarization) from Equation (11.6.50), this time in the limit of highly virtual photons,
ie. when |g|? > m% as a series in |q|?/m%:

mp — 2(1 — x)¢?

In ~In(z(1 —z)) +In (:;) +0 (qi) . (11.7.18)

mRr R Mg

Thus if we evaluate Il g(¢?) in this limit we get:

1

My r(¢%) = 2“73 ) dz z(1 — ) [m (z(1—2))+1n (—5;)]
~on [m <_n§%> _ g} . (11.7.19)

Plugging this approximation into the corrected effective potential from Equation (11.7.7) we get:

V(g) = lex[* (11.7.20)

AR
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where we can interpret this as the renormalized charge er being dependent on the virtuality of the photon
¢%. Thus the effective coupling constant is ¢>-dependent:

eff? = |€ |2 11.7.21
e (¢°) SN (11.7.21)
1 Q&Rln( 732)
R

We can easily see that for an entirely real photon, ie. ¢?> = 0, the effective coupling constant is exactly the
renormalized charge e$f(0) = ep. Physically the running coupling constant reflects vacuum polarization
effects, where virtual electron-positron pairs screen the bare charge of the electron. At low photon
virtualities (|g|> — 0, ie. long wavelengths) the screening is maximal and the effective coupling constant
is at its lowest value, which is the renormalized charge er. As the virtuality of the photon increases
(ie. shorter wavelengths, higher energies) , the photon probes deeper into the vacuum polarization cloud,
which reduces the screening effect and causes the effective coupling constant to increase.

11.8 Renormalization of n-point Gamma Function

11.8.1 For Scalar Fields

Using what we’ve learned from the previous examples we can now generalize the renormalization proce-
dure to any n-point gamma function I'™ with the help of the LSZ reduction formula which we discussed
earlier (see Section 9.3.2). We want to prove that a n-point gamma function for scalar fields is renormal-
ized as:

Ff:})%(ph s 7pn) = Zn/Qngn) (pla s 7pn) ) (1181)

where Z is the scalar field renormalization constant. This follows because each external scalar leg in the
LSZ reduction formula contributes a factor of v/Z to the renormalized correlation function. Equivalently
this can be seen by defining the renormalized field as ¢R = Z71/2¢ and then having F( ) be the n-
point function of the renormalized field ¢r. In fact, we've practically already proven how scalar fields
are renormalized in the example after our derlvatlon of the LSZ procedure (see Section 9.3.3). Let
us diagramatically represent the left-hand side of the LSZ reduction formula for a 4-point correlation
function:
T2, P2 Y2, kg

:C(4)(z1,x2,y1,y2) . (1182)

Z1,p1 Y1, k1

Here the blobs on the external legs represent all possible self-energy corrections to the external legs:

(11.8.3)
and the center blob represents the 4-point function 1"((1)4):

Now lets recall the result from the LSZ reduction formula for the 4-point correlation function (see Equation
(9.3.28)):

~ Z ivZ 5 ivZ vz
C<4)(p17p2;k17k2) = 3 2 . 2 2 - <p17p2‘5|k17k2> P} 5 - D) 2 .
pf — myp + i€ p5 — my, + i€ ki —m% +ie k3 — mp, + ie

. (11.8.5)
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where the S-matrix element is given by:

(p1,pa|S|k, ko) = (21)*6™ (py + pa — k1 — ko )iM(p1,p2 — k1, k2)
(271')45(4) (p1 —|—p2 — k‘l — k‘g)ZF((;) (pl,pg; k‘l, k‘g) . (1186)

Here M is the invariant matrix element for the 2 — 2 scattering process. At tree level M = ' but
beyond that, they are not the same. The invariant matrix element M is actually the sum of all ampu-
tated connected diagrams, which includes chains of 1PI vertices connected by internal propagators:

M = Fgégl + (diagrams built from 1PI vertices connected by propagators) . (11.8.7)

On the other hand, F((;) contains only the 1PI diagrams, without any external propagators attached:

1"((;) = FY;)I = (1PI diagrams only, no external propagators attached) . (11.8.8)

LSZ amputation ensures that the external propagators are removed and that the poles are put on-shell.
Consequently the renormalized 1PI vertex function is related to the bare 1PI vertex function by:

Fiﬂa(pl,pz; ki, k2) = er((;)(}?hpz;kl,kz) : (11.8.9)
To summarize: M # F((;) beyond tree level but LSZ amputation ensures that the two relate correctly.

11.8.2 In General

I just wanted to quickly note, without proof, that renormalization of n-point gamma functions for other
fields follow the same logic. Each external leg contributes a factor of v/Z, where Z is the renormalization
constant for that particular field. So as we saw earlier for QED in Equation (11.6.39) the renormalization
of the QED vertex function up to one-loop is:

@ =T (,0'59) = 22/ 72/ 2T (p,p1q) (11.8.10)

where each v/Z5 comes from the electron legs, and hence contains Z» the electron field-strength renormal-
ization constant, and v/Z3 comes from the photon leg, which contains Z3 the electromagnetic field-strength
renormalization constant. This pattern holds at higher loop orders as well, so that the renormalized vertex
function is always related to the bare one by the product of such factors.

11.9 QED Renormalization via Counterterms
11.9.1 Introduction of Counterterms

Earlier we discussed how to renormalize QED at the one-loop level directly by absorbing the divergences
into redefined parameters and fields. However a more systematic and formal approach to renormalization
is to introduce counterterms into the Lagrangian. These counterterms are designed to cancel the
divergences that arise in loop calculations, ensuring that physical observables remain finite. Let’s illustrate
this procedure using QED as an example. The bare QED Lagrangian is given by:

. 1 y
‘CQED = w(Z’y#DH - m)w - ZF;,WFP‘
- _ 1
= ¢ (Z’Y‘uau - m) w - €¢7HAM¢ - EF;UJF#V ) (1191)
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where D,, = 0,, + ieA, is the covariant derivative. To renormalize this Lagrangian we introduce renor-
malization constants for the fields which contain d-terms that will act as counterterms, they are chosen
to exactly cancel the divergences that arise in loop diagrams:

Z1=1+461, (11.9.2)
Zo =1+ 6o, (1193)
Z3=1+063. (11.9.4)

We also introduce a mass counterterm dm to renormalize the electron mass:
Zym =mp +dm . (11.9.5)
Now we can rewrite the QED Lagrangian in terms of renormalized fields and parameters:
SBD = ZatR(iv"0, — m)br — Zo/Zshpy" Al — Zs FR,uqu”
= Pr(iv"0, — mpr)¥r — erPrRY* AR — iF,ﬁFW
+ YR (i627" 8y — Om )R — O1eRURY" AR — % FR wFE (11.9.6)

where the renormalized fields and parameters are defined as:

vr =25y, (11.9.7)
AR = 77124, (11.9.8)
er = 272,73 %, (11.9.9)
mp = Zam — om . (11.9.10)

This ensures that mpg is finite and corresponds to the physical electron mass and that eg is the finite
physical charge.
11.9.2 Electron Self-Energy Counterterms (dz,d,,)

For the electron, the relevant Lagrangian part is:
Ee = JR(i'y“au — mR)’(/JR + &R(iégﬁy”@ — (5m)’(/)R . (11911)

The first term gives us the renormalized free electron propagator, while the second term acts as a vertex
insertion into the Feynman diagrams which is automatically 1PI since it cannot be disconnected by
cutting a single internal line. 1P electron self-energy 3(p) at one-loop order is defined as the sum of all
1PI diagrams with two external fermion legs, including the counterterm insertion:

—iX(p) = —is(p) + 102(i027" Dy — Oa) , (11.9.12)

From this we can derive the renormalized electron propagator by resuming the geometric series of self-
energy insertions:

ALooP(p) = AF'(p) _|_AF'( p)i%(p )AF( )+ Ar(p)(—i (p))A.F(p)(—iZ(p).)AF(p) +
Tp-m +H(_ )p—m Z/)—m(_iz)}”—m(_m)m+m

v—fmi[“%—imr

n=0
_ ) 1
T p—m 2(p)
P L+ 5=
)
11.9.13
p—m—X(p,m) ( )
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where each denominator technically also contains an ic term, which we’ve omitted for clarity. This is
identical to the expression we had earlier in Equation (11.5.16) except now X(p) includes the counterterms.
Now we can impose the renormalization conditions for on-shell renormalization. We want a pole at the
physical mass p = mpg which has a residue of 1:

p=mr: Om=Xo(p=mnr), (11.9.14)
O%(p)

Res=1: 49 = 3 (11.9.15)
Pl
11.9.3 Photon Self-Energy Counterterm (d3)
The relevant Lagrangian part for the photon is:
1 1
Ly = FiFR — Z?’nyFg” : (11.9.16)

The first term gives us the renormalized free photon propagator. The second term acts as a photon
two-point vertex insertion, which is again automatically 1PI. The 1PI photon self-energy Hw(q2) is then:

i (%) = T2, (4°) + 163(4° Gw — Gulv) » (11.9.17)

where II, W(qQ) is the one-loop photon self-energy. In the Feynman gauge the self-energy is:
0, 7(¢%) = (90 — 4,9)02,7(¢%) = (¢° 9w — 4uav) [M2(q®) — 83] - (11.9.18)
where TI(g?) is the scalar part of the unrenormalized one-loop photon self-energy. It follows then that:
Iy r(q%) = Ta(q®) — 05 . (11.9.19)

We will borrow the result for the corrected photon propagator from Equation (11.4.36) with which the
full renormalized photon propagator at one-loop order is:

Dl—loop _ _ig/“/ _ _i‘g’“/ . 11.9.20
(@) ¢?[1 - Tz r(g?)] +ic %[l —IIz(g?) + 63) +ic ( )

We fix the value of the counterterm d3 by imposing the renormalization condition that the photon remains
massless, ie. that there is a pole at ¢g?> = 0 and that the residue of this pole is 1. Near the pole we can
expand I13(q?) as a Taylor series:

I5(q%) = I1>(0) + ¢°I15(0) + O(q*) , (11.9.21)

q2—0

where IT5(0) denotes the derivative of the scalar part of the photon self-energy w.r.t. ¢* as:

dIly(¢?)
q%2=0
The two renormalization conditions are then:
?=0: T(0)—63=0 = &3=1I(0), (11.9.23)
o _
Res=1: a—(ﬂDﬁVIOOP 1(q) = —igy, = Satisfied Automatically . (11.9.24)
q?=0

The second condition is very non-trivial and stems from the residue requirement which we can explicitly
evaluate as:

i 2
Res[DL1°P(q)] = lim ¢*DL1°P(g) = lim uvd = —igu, . (11.9.25)

20 20 % [1 —TI2(q?) + 03] + ie

where the square bracket in the denominator can be expanded using Equations (11.9.21) and (11.9.23)
as:
lim [1—1Ta(¢?) + 85] = [1 — 2(0) + 05 + O(¢*)] = 1+ O(q*), (11.9.26)

q?—0

and we’ve dropped ¢*I15(0) since it is O(q?).
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11.9.4 Vertex Counterterm (d;)

The renormalized QED vertex function is given by:
Lp(p.p') =T"(p,p) + 017", (11.9.27)

where T'*(p, p') is the one-loop vertex function without the counterterm. The renormalization condition
we want to impose is that at zero momentum transfer (¢> = 0) the vertex function reduces to the tree-level
vertex:

I (p.p) oo = (HeRN" (11.9.28)

We will borrow the result of our QED vertex decomposition from Equation (11.6.12). We see that
I'*(q* = 0) = —iegy"Fy(0) . (11.9.29)
We can use the condition above to solve for the counterterm d1:
—iegy" =TH(q? = 0) + 617" = —iepy" F1(0) + 619", (11.9.30)

which yields:
8 = — [ieg — ieF1(0)] = ierdF1(0) (11.9.31)

where F1(0) = 1+ 6F1(0) is the form factor at zero momentum transfer from Equation (11.6.43). At the
one-loop level I'* matches 0X5/0p at p = mp due to the Ward identity (see Section 10.3), which means
that (51 = 62.

12 Quantization with Feynman Path Integrals

12.1 Short Introduction

So far our entire approach to quantum field theory has been based on the canonical quantization of
fields. This approach is very powerful, but it has its limitations. In this section we will introduce an
alternative approach to quantization, which is based on the Feynman path integral formulation of quan-
tum mechanics. The key idea in quantization with path integrals is that instead of promoting fields
to operators as in canonical quantization, we encode quantum dynamics directly through a sum of all
possible configurations weighted by the exponential of the action by means of a functional integral. In
this formulation, time-ordered operator products are represented as insertions of classical field functions
inside the functional integral. This approach is particularly useful for theories which cannot be solved
perturbatively, such as Quantum Chromodynamics (QCD). However this does not mean that we can
calculate such theories by hand, but rather that we can use numerical methods to approximate the path
integral.

Since the path integral can be seen as a sum over all possible field configurations, there exists a natural
connection to Statistical Physics. This analogy follows strictly after Wick rotation where transform from
Minkowski to Euclidean spacetime. In fact, the path integral can be seen as a partition function of a
statistical system after a Wick rotation, where the fields are the degrees of freedom of the system. This
connection allows us to use powerful numerical methods from Statistical Physics, such as Monte Carlo
methods, to approximate the path integral, which is excellent in the case of non-perturbative theories.

12.2 Feynman Path Integral for Scalar Fields

The first step is to work in the eigenbasis of the field operators. In this basis, the field operator g{)(:c, t)
acts by multiplication with its eigenvalue:

é(mvt)hbv t> = ¢(mvt)|¢v t> ) (1221)

where ¢(x,t) is the eigenvalue. These eigenstates need to satisfy orthogonality via a functional version
of the usual orthogonality relation:

(@'t 1) =[]0 (¢ (2,1) — (1)) - (12.2.2)
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Now if we imagine that we discretize spacetime into a lattice of hypercubes. We want to find the field
theory analogue of the well-known completeness relation from quantum mechanics:

/da: )] = 1. (12.2.3)

In the case of fields, we have to integrate over all possible field configurations ¢(x,t) instead of just over
a single coordinate x. On a spatial lattice with IV sites, a field configuration is specified by N values of
the field {¢(x1,t), p(x2,t),...,0(xN,t)}, where x; are the lattice points. The field theory analogue of
the completeness relation then takes the form of a product of integrals over each of these field values:

10 =11 " a6, 1), 0) (1] (12.2.4)

In the continuum limit, where N — oo and the lattice spacing goes to zero, this product of ordinary
integrals becomes a functional integral, which we denote as:

1(1) = / D, )], £) (1] (12.25)

where D¢(x,t) denotes the functional measure ie. integration over all possible field configurations ¢(x, t)
at a fixed time ¢. The full path integral is defined as the transition amplitude between the initial and
final states:

(7, tf|¢isti) = (Ds[U(t s, t:)|04) (12.2.6)
where U(ts,t;) = exp(—iH (t; — t;)) is the time evolution operator. Now since we’ve discretized spacetime
we need to apply time-slicing to this evolution. Splitting the interval [¢;, ;] into IV slices of equal length
At = (ty — t;)/N;, we can write the transition amplitude as:

(Ss[U(E5, )05 = (D5 [ 27 [) (12.2.7)

Next we insert the field completeness relation from Equation (12.2.5) at each time slice:

N—-1 N—-1 ‘
@nlUter.)l6) = [ T] Don [T (6rsale25). (12.2.5)
k=1

Jj=0

where ¢g = ¢; and ¢n = ¢¢. Next we need to split the Hamiltonian into two parts via a Trotter

decomposition: A ) )
e AL o p—iH At —iH AL 4 O(At2) , (12.2.9)

where H, is the part of the Hamiltonian that depends on the square of the conjugate momentum 7 (x, t)
and H, is the part that depends on the field ¢(x,t). For a real scalar field, we have:

1
Hy =35 /d% 72(x,t), (12.2.10)

Hy = /d% Ho(d(x, 1)) = /d% B(vé(:p,tw + %m%?(a;,t) +V(o(m,1)| - (12.2.11)

Next we insert the momentum completeness relation (analogue of (12.2.5)) for conjugate momenta eigen-
states:

1= /D’]Tk(il:7t)|7rk,t><ﬂ'k7t|, (12212)

in between the two exponentials in the Trotter decomposition, such that each exponential acts in its own
eigenbasis:

(@jr1le T8 g;) ~ /D”j<¢j+1\e_iH”AtVTj}<7Tj|€_iH¢At\¢j>~ (12.2.13)
Because of diagonality in the eigenbasis, we can easily evaluate the two matrix elements:
— 1At .
(8541l B ;) = exp {2 [ wf-} (by1alms) (12.2.14)
(e 005} = exp { <iat [ @ Ho(6) (m3105). (122.15)
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What remains is to evaluate the overlaps (¢|m) and (m|¢). From canonical quantization we know that
the field and its conjugate momentum satisfy the commutation relation:

[p(), 7 (y)] = i6*(x — y), (12.2.16)
and of course that operators work on their eigenstates as multiplication with the eigenvalue:
o(x)|¢) = o()|9) , (12.2.17)
7i(@)|m) = m(x)|T) . (12.2.18)
From this it holds that:

(¢l7) = Anorm exp{ /d3x w(m)¢>(m)} : (12.2.19)

where Aporm is some field-independent normalization constant. Using this result we can combine the two
overlaps into:

(Dj41lmj)(mj|¢5) o< exp {i/dgﬂf i (@) (P541(2) — ¢j(m))} : (12.2.20)

Then when we put everything together, we find that the matrix element can be written as:

<¢j+1|e_iHAt‘¢j> ~ /D’]Tj exp {i/d%j |:71-J ¢J+1At ¢j (;77; +7—[¢(¢])> ]} . (12.2.21)

Now to evaluate the continuum limit when A — 0, we need to perform the functional integral over =;.
This is a Gaussian functional integral, which we can evaluate point-wise in coordinate space:

1 2 _ ¢J+1 ¢J_

3T A _i(wj—vj)% v, (12.2.22)

N |

where v; = (@41 — ¢;)/At, such that we complete the square. From this we see that the functional
integral over 7; reduces to:

/ij exp {i/d?’x [—;(wj —vj)QAt]} o exp{ /d% 2v2At} (12.2.23)

With this our matrix element from Equation (12.2.21) becomes:

; (¢J+1At ¢J> —H¢(¢j)‘|} . (12.2.24)

Now if we multiply over slices j = 0,..., N — 1 and recall that ¢9 = ¢; and ¢ = ¢, we find that the
transition amplitude can be written as:

(DU (t5,1:)165) = Apor / Hm»kexp ZAt [t [2 (%*;t ‘i’f) —m(%)] - (122.25)

(Pj41le” B g;) o eXp{ /de At

Finally we can take the continuum limit At — 0 and N — oo, with that:

G =0i Ay (. t) (12.2.26)
At

N-1 ty

oAt / dt, (12.2.27)

j=0 ti

giving us the following for the transition amplitude:

d(ty)=dy

(b1 t5160 1) = A / Do exp {s / at [ @ |5 @ote.0)? - Holotn)| | . (12228)

(ti)=¢:
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We can identify the Lagrangian density in the square brackets:

1
L= 3 (Or(,1)" = Hy((, 1)), (12.2.29)
from which we can recover the standard action:
1 1 1

61 = [ s £0,00) = [a'e |30 - J(ToP — gmts? - V(o) (12.2.30)

Hence we see that the transition amplitude is given by the Feynman path integral:

. d(tf)=o5 )
(05,47165t) = Ay [ D6 exp (iS[6) | (12.2.31)
(ti)=¢i

where A/ . is a normalization constant which comes from the product of Gaussian integrals. Generally

it will cancel out in normalized correlators.

12.3 Correlation Functions

The two-point correlation function is defined as the transition amplitude between two field configurations
at different times with a time-ordered product inserted in between:

(. tale BT {d(x1)d(x2) e P4 p A, ta) . (12.3.1)
Assuming ¢4 < t; and t9 < tg, we can write this as:

) . R ) #(tg)=05 i
(05, tple” 17 d(1)d(x2)e M P, ta) = / Do p(a1)d(w2)e' . (123.2)
d(ta)=da
Time-ordering is automatic because the path integral builds the fields in time order. To obtain the
vacuum two-point correlation function we project onto the vacuum by sending the boundary times to
asymptotic past and future with the usual ie prescription to avoid contributions from excited states:

JIm=08 D 1) (w219

(QT{p(x1)d(22)}|) = lim ! 1233
—oo(1—i #(te)=¢B iS
i2:+oo§1+ig Jot=p D&

Since both the numerator and the denominator include the same asymptotic vacuum projection factors,
the result is independent of the particular fixed boundary conditions ¢4 and ¢g, so long as they are
non-orthogonal to the vacuum and the ¢e prescription is used. In compact notation then we can write:

o 1)) S19) ‘
Ty - TP o [ oot (1234)

where Z[0] is the partition function without sources, defined as:
Z[0] = /Dqs Sl (12.3.5)

We properly derive correlation functions and generating functionals in path integral formalism in the
subject Gauge Field Theory with prof. Kamenik. Just as a quick illustration however, path integral
formalism allows us to compute time-ordered correlation functions of fields in a very straightforward
manner. To generate correlation functions, we introduce a classical source term J(z) which couples
linearly to the field ¢(z) in the action. With this addition we define the generating functional as:

ZlJ) = /D¢ exp {i/d‘*x [L(p,0:0) +J(a:)¢(x)]} . (12.3.6)
From this generating functional we can obtain time-ordered correlation functions by taking functional

derivatives with respect to the source J(z):

1 5" Z[J]
[0] 707 (21)0J (22) - 6 ()

(QUT {o(21)d(22) - d(za) } ) = — (12.3.7)

J=0
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12.4 Wick Rotation to Euclidean Space

The path integral in Minkowski spacetime is highly oscillatory due to the e*® factor, which makes nu-
merical evaluation very difficult. To make the path integral more amenable to numerical methods, we
perform a Wick rotation to Euclidean spacetime by transforming the time coordinate as t — —i7. Under
this transformation, the action transforms as:

S = /dt/d3x£
= [(ian / & [; (a‘fﬂ) S(VO) = S~ V(9)
= [t-ian) [ [ (2 ) (Vo) — 3m*? ~ V(9)

- / (—idr) / &z (—Lp)

Sy (12.4.1)

where L is the Euclidean Lagrangian density (signs all equal due to metric swap) and Sg is the Euclidean
action. So the weight factor in the path integral transforms simply as:

s 5 eE (12.4.2)

12.5 QFT at Finite Temperature

Quantum field theory at finite temperatures can easily be formulated in the path integral formalism.
The key idea is to use the analogy between the path integral and the partition function from Statistical
Physics. We've already seen how we can rotate to Euclidean spacetime, which transforms the weight fac-
tor in the path integral to e %%, which is reminiscent of the Boltzmann factor e ~## in Statistical Physics.

Mathematically we start from Equation (12.3.2) where instead of projecting onto the vacuum in the
asymptotic past and future, we consider a thermal ensemble where all states contribute with Boltzmann

weights: .
e PH  where (= T (12.5.1)

In the language of path integral formalism, this corresponds to compactifying Euclidean time on a circle
of circumference 3, with fields satisfying periodic boundary conditions in the Euclidean time:

o(x,7) = ¢(z, 7+ B) . (12.5.2)
With such a compactification the partition function becomes:
Zg =Y (nle”|n) = Tr(e ). (12.5.3)

n

The Euclidean path integral then becomes:

d(T+8)
Z(B) = /¢( ) D e 57 (12.5.4)
Observables at finite temperature can then be computed as thermal expectation values:
1 d(T+8) Sul4]
O)g = ——— Do O TRE 12.5.5
=5 [, PoOwE (125.5)
In fact we can calculate the trace of any operator O as:
Tr(0) = > (m|O|m), (12.5.6)

where {|m)} is any complete orthonormal basis. Basically, the key idea behind finite-temperature QFT
is to evolve the system in imaginary time over a finite interval 7 € [0, 8], where g = 1/T is the inverse
temperature.
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12.6 Example: Positronium Mass

As an example of how to use the path integral formalism, let us try and calculate the mass of a positronium
e~ e’ bound state in the context of QED. We will see how correlation functions encode physical observables
like the masses of bound states. Lets imagine we have a suitable operator O with well-defined coordinates:

O(z,t) = P(z, t)y.9(2, 1) . (12.6.1)
We can make use of a Fourier transform to express the operator in momentum space:

O(p,t) = / d*z e P2O(x,t) . (12.6.2)

With this we can then calculate the two-operator correlation function (essentially the propagator of the
composite state):

C(t) = (2O(p,1)O' (p,0)|22) = (12.6.3)
= /dm1dwz e~ P @122 (O (), )7, (w1, 1) [@(wz,o)vztﬁ(wzﬁ)r 12)

e~ P (T1—22) oiS[P 1), AV _ 2 R - t
:/d$1d$2 Z[O] /D¢D¢DAu w(mlat)yzw(wlvt) [¢($270)7z¢(-’32a0)

Using a Wick rotation to Euclidean space, we can write this as:
C(r) = (Q|O(p = 0,7)0' (p = 0,0)|Q) =
~ [ DuDIDA" O(p = 0.1)0 (p = 0,0)c 5554

=Y {QO(p = 0,7)|n)(n|O' (p = 0,0)[2) exp [~ E, 7] , (12.6.4)

where in the last step we inserted a complete set of energy eigenstates >, |n)(n|. C(7) can be interpreted
as the Euclidean-time propagator of the positronium state from time 0 to time 7. As we limit 7 — oo
the lightest state dominates because all higher-energy states are exponentially suppressed, thus:

T—>00

C(r) ——= Age™ "7 | (12.6.5)

where mp, = Ej is mass of the positronium in the ground state and Ay = [(Q2|O|Ps)|? is a normalization
factor. Thus to extract the positronium mass we do:

mps = — lim E InC(7). (12.6.6)

T—00 T

This is the standard technique used in lattice QCD or Euclidean path integral calculations to extract
masses from correlation functions.
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A Appendix

A.1 Dirac Trace Technology

Dirac trace technology is a powerful tool in quantum field theory, particularly in the context of QED. It
allows us to compute traces of products of Dirac gamma matrices, which arise in calculations involving
fermions.

Tr(y"y") = 49", (A.1.1)

Tr(odd # of 7) =0, (A.1.2)

Tr(vkav* v (k + @)p7°) = dka(k + q)5 [9" 9% + 9" g™ — g" g°"] , (A.1.3)

(A.1.4)

And other useful gamma matrix identities:

WY =d, (A.1.5)

=29, (A.1.6)

7“ka7a7u = _(d - Z)ko/}/a 5 (A17)
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