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1 Introduction

The scope of computer networks has been expanding rapidly in the past few decades. What were once
simple networks of interconnected computers have now evolved into complex systems that are used for
a wide range of applications. It makes sense then for one to plan and analyze the flow of data in such
networks to ensure that they are efficient and reliable and thus cheaper to maintain.

As my final assignment for Model Analysis 1, I opted to simulate the flow of data in a randomized com-
puter network. The network consists of a N x N grid, where each unit/node of the grid can be a server, a
user or a wire used to connect the two. Each of these units is connected to its four nearest neighbors and
has a value associated with it that specifies it’s bandwidth. For wires this is the maximum data through-
put, for servers it is the maximum data processing rate and for users it is the maximum data consumption
rate. We'd like to find the distribution of server-loads for a grid of wires with random bandwidths. It
is possible to study many different types of server and user placements but the most interesting one to
us will be where we have the users and servers placed on the top and bottom rows of the grid, respectively.

We can solve for the flow rates through the network by solving a set of constrained linear equations.
This field of study is known as linear programming and is a powerful tool for solving optimization
problems. We’ve already seen some linear programming use in the second task of this course mod102
where we created a dietary plan from a set of given foods based on their costs and nutritional values.
For the sake of completeness it makes sense to quickly go over the basics of linear programming before
we proceed with the simulation. Linear programming uses linear optimization to find the maximum or
minimum of a linear function which is subject to a set of linear constraints. This function is known as
the objective function and is quite analogous to the cost function we’ve seen mentioned in the world of
machine learning. The constraints are linear inequalities or equations that define the feasible region of
the problem. Mathematically formulated we can consider a cost function f(z) and a set of constraints
defined as:
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The goal is then to find the values of 1, zs, ..., 2, that maximize or minimize the cost function f(x)
while satisfying the constraints. The feasible region is the set of all points that satisfy the constraints and
the optimal solution is the point in the feasible region that maximizes or minimizes the cost function.
That is all that is necessary from a mathematical perspective. Of course the actual implementation of
solvers for such problems are much more complex and involve a lot of optimization techniques but that
is not the focus of this assignment.



2 Task

The original text of the assignment reads as follows:

Razporejanje prenosa podatkov po omrezju: Za model omrezja vzemi N x N
kvadratno mrezo, vsak rob pa ima naklju¢no maksimalno hitrost povezave med 0 in 1.
Vozliséa na zgornjem robu so internetni odjemalci, spodnji rob pa so strezniki. V notranjih
vozliscih velja 1. Kirchhoffov zakon. S pomocjo linearnega programiranja doloci, koliksne
hitrosti prenosa imajo strezniki in odjemalci, ko je skupna hitrost prenosa najvecja. Ker gre
za naklju¢na omrezja, si oglej tudi statisticno porazdelitev zanimivih koli¢in.

Translated to English this reads:

Distribution of Data Transmission in a Network: Take a N x N square grid as the
network model, where each edge has a random maximum connection speed between 0 and 1.
The nodes on the top edge are internet clients, while the bottom edge are servers. In the
internal nodes, Kirchhoff’s first law holds. Using linear programming, determine the
transmission speeds of the servers and clients when the total transmission speed is
maximized. Since these are random networks, also examine the statistical distribution of
interesting quantities.

3 Solution Overview

I took upon the task of simulating the flow of data in Python using PuLP [l1] as my choice of linear
programming library among others such as numpy, scipy and matplotlib. I'm aware that more complex
network simulation packages exist for Python, such as networkx, but I wanted to keep the simulation as
simple as possible and home-brewed. To start I created the base classes, User, Server and Wire that
represent the nodes of the network. Among other things each of these classes has a bandwidth attribute
that specifies the maximum data throughput, processing rate and consumption rate, respectively. The
other attributes determine the position of the node in the grid, its ID etc. All these classes are slotted
into a Grid class that represents the network as a whole. The Grid class contains the necessary methods
to setup the network, solve the linear problem and extract or plot the results.

I think it makes sense to go over the various constraints I've imposed on the network. The most
challenging part of setting the constraints was my want to use the absolute values of the flow rates in
the linear equations. This becomes a problem because the absolute value function is not linear and thus
not directly compatible with linear programming. To get around this I've used the following trick. I've
introduced two new variables p™ and p~ that represent the positive and negative parts of the flow rates,
respectively. Both of these quantities are non-negative and their sum is equal to the absolute value of the
flow rate, such that p = p* — p~. This way I can rewrite the absolute value of the flow rate as a linear
combination of p* and p~.

The next step was to impose constraints for the flow rates through the network. The flow rates are
determined by the bandwidths of the wires, servers and users. Wires are allowed to transmit data in both
directions thus the absolute value of the flow rate cannot exceed two times the bandwidth of the wire.
The sum of the flow rates into a Wire node must be equal to the sum of the flow rates out of the Wire.
Servers and Users are special cases since they cause a divergence in what we could call the flow field, if
we had a continuous field. The flow rate into a Server is strictly zero (thus p~ = 0). Likewise the flow
rate out of a User is also strictly zero (thus p* = 0). The maximum flow rate into a User is determined
by its bandwidth. The way I've set up the constraints is that the users demand the maximum amount
of data they can consume unconditionally while the servers are allowed to process data at a rate that is
less than or equal to their bandwidth.

The objective function of the linear problem is to satisfy the demands of the users while minimizing
the flow rates through the network and minimizing server loads. The flow rates are minimized by min-
imizing the sum of the positive and negative parts of the flow rates. The server loads are minimized by
minimizing the sum of the flow rates into the servers. The objective function is thus a linear combination
of the flow rates and server loads.

The way the problem has been set up results in two sets of data for flow rates, one for the positive
part and one for the negative part. The two are equal in magnitude but opposite in sign and we can



consider the real solution to be one or the other. The flow divergence is thus given by the sum of the
two. The term flow divergence is used here to describe data that is either consumed or produced by the
network. The flow divergence must thus be zero at all nodes except for the Users and Servers.

To stick with the purpose of having a home-brewed simulation I also drew some icons for the Users
and Servers in a pixel art style. From what we’'ve specified and implemented so far we can solve for the
flow rates through an arbitrary network. I've drawn two examples for arbitrary grid configurations on a
10 x 10 grid. I've also tried to show the effect of changing the way the bandwidths of wires are sampled.
The results can be seen Figures la, 1b, 2a and 2b and Figures 3a, 3b, 4a and 4b. In all examples each of
the users demanded a flow rate of 0.5 while each server could supply a flow rate of 1.
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between 0 and 1.

I think that the effect of changing the distribution of the bandwidths is extremely clear as it is well
pronounced in the results. It has a very large impact on the flow rates and path choice through the
network. The beta distribution with o = 10 and 5 = 10 is very skewed towards the higher bandwidths
and thus the flow rates are very uniform. The uniformly distributed bandwidths on the other hand yield
a very chaotic network with a lot of wires needed to carry the data. The constant bandwidths are there to
illustrate the effect of a clean grid with no variation in bandwidths and how additional paths are added if
the individual wires cannot carry the data. Personally I think the patterns are very pretty and I'm happy
with the results given by my implementation. I will not claim that it was effortless to set up properly.

4 Results

Let’s have a look at the results. It is important to note that the bandwidths were not sampled uniformly
but rather from a beta distribution. The beta distribution is a continuous probability distribution that is
defined on the interval [0, 1]. It is a good choice for this problem since we can easily skew the distribution
towards the lower or higher bandwidths. Having a uniform distribution yielded grids that were infeasible
to solve, especially at larger sizes. The Figure 5 shows the probability density function of the beta
distribution for different values of the shape parameters « and 3. The shape parameters determine the
skewness of the distribution.
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Figure 5: Probability density function of the beta distribution for different values of the shape parameters
«a and f.

We can see the results of a basic simulation for a 10 x 10 grid in Figure 6. The wires in this grid
have bandwidths sampled from a beta distribution with o = 10 and 8 = 2. For illustrative purposes I've
colored the nodes based on their flow divergence and plotted both the positive and negative parts of the
flow rates.

Optimized Grid

22222222 1

0.6
0.8 0.4
0.2 &
0.6 = S
+ o0
e ~
- o
= 0.0 >
] -
c [=]
3 =
0.4 3
0.2
Lo.2 -0.4
-0.6

(PO O O O O ) —o

T
-0.6 -0.4 -0.2 0.0
Flow

Figure 6: Flow rate in a 10 x 10 grid with wires having bandwidths sampled from a beta distribution
with « = 10 and 8 = 2.

We can see that the flow divergence is zero at all nodes except for the Users and Servers. The flow
of data goes almost as linearly as possible from the Users to the Servers, however due to the objective
functions demand to minimize server loads the flow rates are not uniform. We can see on the left-hand
side of the grid that the flow is higher for the second server and lower for the first. The first user receives



data from both these servers as a portion of the data is carried over from the second server. This is likely
due to wires in the direct path to the first server having lower bandwidths, thus making it cheaper to
carry the data over from the second server and to place the original connection to the first user slightly
to the side. The same results can be seen for grids of larger sizes. I've plotted the results for a 30 x 30
grid and a 100 x 100 grid in Figure 7. The bandwidths of the wires here were also sampled from a beta
distribution with o = 10 and g = 2.
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Figure 7: Flow rate in a 30 x 30 and 100 x 100 grid with wires having bandwidths sampled from a beta
distribution with o = 10 and g = 2.

No lie, that the individual paths here are much harder to see but the general flow of data is still very
clear. I'd like to point the readers attention to the small white bridges that form in both cases but are
more prevalent on the larger grid. These are very small almost zero flows that probably happen as an
artifact of the method. I've added an ¢ tolerance to the flow rates to avoid numerical instability but these
were just slightly above the threshold. I kept them regardless to show that the model does also make
some nonsensical connections with extremely small flow rates.

The main result I'd like to present is the distribution of the server loads for a 30 x 30 grid with wires
having bandwidths sampled from the beta distribution for different shape parameters. I've also added a
special case where the user demand is lower at 0.1. The results can be seen in Figure 8. The plot was
created by solving a 30 x 30 grid 100 times for each shape parameter pair.
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Figure 8: Distribution of server loads for a 30 x 30 grid with wires having bandwidths sampled from a
beta distribution with different shape parameters.

Findings from this plot can be somewhat inconclusive as there is really not much of a trend to com-
pare. In addition, sampling from a distribution that is less skewed towards 1 has a large impact on
the feasibility of the grid. This infeasibility only grows with the size of the grid. I've tried to do some
rudimentary correction to the histograms by rescaling them to the proper number of samples however
this can definitely lead to false results especially in the case of the lower rightmost plot. The shape of
the histogram shown is only for those configurations that were feasible. There’s no telling how the shape
could change were the other configurations also properly solved. I wonder if I have perhaps misunderstood
the instructions since the majority of large grids are infeasible to solve with random bandwidth sampling
for the wires. What we can see is that the more skewed the distribution of bandwidths is to 1 the more
we see a delta function like distribution of server-loads centered around the bandwidth the users demand.
More uniform wire bandwidth distributions lead to a more uniformly distributed server-load with a peak
at the user demand. I find it interesting that in the case of a very very skewed beta distribution, as seen
in the upper rightmost plot, server-loads slightly rise on the extreme ends of the bandwidth constraints.
This is likely due to the fact that the objective function also tries to minimize the server-loads and it
appears that having some servers work harder and others rest is cheaper than having all servers work at
the same rate.

I wish I had more time to do further analysis on the model but I'm critically out of time. I find
the report somewhat disappointing as I feel that I could have done more with the model and everything
seems somewhat uninspired. I tried to calculate network relevant quantities such as the ping time between
the Users and Servers and jitter, which is the variation in the ping time but I had big problems with
implementing proper pathfinding based on the results of the LP problem. Looking back I think it could
have been easier to just calculate some of these quantities directly by hand. Figures 9 and 10 show the
results of the pathfinding algorithms A* [2] and Dijkstra’s Algorithm [3] for the 10 x 10 grid again with
wires having bandwidths sampled from a beta distribution with a = 10 and 8 = 2 or set to a constant
value of 0.7.
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Figure 9: Demonstration of the A* pathfinding algorithm.
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Figure 10: Demonstration of Dijkstra’s pathfinding algorithm.

The A* algorithm used the wire bandwidth as the path cost function and the Manhattan distance
as the heuristic. Dijkstra’s algorithm used the wire bandwidth as the path cost function and has no
heuristic. I'd love to go into more detail of these pathfinding algorithms but I hardly see any point in
doing so as I've not been able to use them for any useful results. The paths they find are not the same
as the ones the LP problem finds and I'm not sure how to reconcile the two.

As a sort of consolation prize I've calculated the LP problem total and solve times for different grid
sizes. Each grid was attempted to be solved 10 times. The total time is the time needed to solve the full
problem including it’s setup while the solve time is only the time needed to run the LP problem solver
once the problem has been setup. The results can be seen in Figure 11.
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Figure 11: Total and solve time for different grid sizes.

I've tried to fit a square and cubic polynomial to both times and I think it’s safe to say that the
dependence of the solve/total time on the grid size is at least quadratic. To close off the report I tried
to improvise a bit and calculate the ping and jitter by simply taking the sum of all the flows on the grid
and dividing it by the number of nodes. The jitter is then the standard deviation of the flows, while the
ping could be shown to be related to the average flow. The results can be seen in Figure 12.
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Figure 12: Flow sum (ping) and standard deviation of the flow (jitter) for different grid sizes.

We can see that the mean flow is constantly 0 which is exactly as expected since it is the sum of both
the negative and positive parts we’ve defined earlier. The absolute value of the flow is then the sum of
the two and it seems to tend to a constant value of 0.8. That would mean that the average flow rate
for either the positive or negative part tends to 0.4. This seems to be a good sign, since it means that
the network seems to be balanced regardless of it’s size. The jitter however is quite horrible and seems
to grow with the size of the grid. To analize this better I'd need more results for better statistics since

I have a feeling that out of the 10 attempts to solve for each size, the larger grids did not have as many
feasible solutions.



5 Conclusion and Comments

As mentioned towards the end of the report I'm not entirely happy with the results and I think this
whole project was rather uninspired. I had bigger plans for the model but I was not able to implement
them in time, which to be clear is entirely my fault. I think the results I have presented are at least
moderately interesting. I hope I correctly understood the task and that the results I've presented are at
least somewhat relevant. I started to have doubts when trying to solve for the larger grids and I'm not
sure if I've done something wrong. However it was already to late to make major changes to the model.
I find the results interesting. At least the patterns that the model are fun to look at.

Thanks to the professor and the teaching assistant for the course. I've learned a lot and I'm looking
forward to the continuation of the course in part two. I hope to do better in the future.
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