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1 Introduction

Today we're taking a look at the filtering and spectral analysis of signals. Filtering is a process of removing
unwanted parts of a signal, while spectral analysis is a process of decomposing a signal into its frequency
components. Both of these processes are crucial in signal processing and would not be possible without
the Fourier transform. The Fourier transform is a mathematical operation that transforms a function of
time into a function of frequency. It is used to represent the signal as a sum of sinusoidal functions from
which we can extract important frequency information. The equation for the Fourier transform and its
inverse are given by:
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The Fourier transform has various properties that we’ve discussed in other tasks. What will turn out to
be significant in this task is the fact that the Fourier transform imagines/expects that the input signal is
periodic. This is important because the Fourier transform of a signal that is not periodic will be subject
to various effects of aliasing and leakage. These effects can be mitigated by windowing the signal before
applying the Fourier transform. Windowing is a process of multiplying the signal by a window function
that is zero outside of a certain interval. This effectively makes the signal periodic and reduces the effects
of aliasing and leakage. Figure 1 shows some common window functions that are used in signal processing.
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Figure 1: Common window functions used in signal processing.

An important operation in signal processing is the convolution. Convolution is a mathematical oper-
ation that combines two signals to produce a third signal. It is used to model the effect of one signal on
another signal. The convolution of two signals f(¢) and g(t) is given by:

(f* o)t / F(r)glt - 7)dr (3)

The convolution operation is commonly used in filtering. Filtering is a process of removing unwanted
parts of a signal. Filters can be divided into roughly two categories: low-pass filters and high-pass filters.
Low-pass filters allow (or pass) low-frequency signals and block high-frequency signals, while high-pass
filters do the opposite. Filters can be implemented in the time domain or in the frequency domain. In
the time domain, filters are implemented as convolution operations, while in the frequency domain, filters
are implemented as multiplication operations. For todays task we’ll take a look at Wiener’s (Optimal)
Filter. Wiener’s filter is an optimal filter that minimizes the mean square error between the estimated
random process (noise) and the desired process (signal). Imagine we have a signal u(t) which we measure
using a sensor with the transfer function r(¢). The signal with the addition of noise n(t) is then given by:

c(t) = u(t) «r(t) + n(t) = s(t) + n(t) , (4)

where * denotes the convolution operation. From the measured quantity ¢(¢) we want to reconstruct
the signal u(t), given the fact that we have some information on the noise n(t) and the sensors response
r(t). Following analogously to the Least Squares method, Wiener proposed a filter in which we have to
multiply the Fourier transform of the measured signal é(w) with:

[$(w)l?
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We can also perform the so-called Wiener deconvolution using the Wiener filter and a convolution kernel
(which is the transfer function of the sensor). So in the case of image restoration we can use the Wiener
filter to remove the noise from the image if we know the transfer function of the sensor, which could for
example be the point spread function of the camera with leads to blurring of the image. There are many
other methods for image restoration, but Wiener’s filter is a good starting point and we’ll limit ourselves
to this method in this task.

D(w) = (5)

2 Task

2.1 Spectra of Signals

In the first subtask, the instructions want us to calculate the spectra of signals, that were provided in
val2.dat and val3.dat. We should try out different windowing functions to see how they affect the



spectra. We can also try and see what happens if we only select a part of the signal and calculate the
spectrum of that part. Figure 2 shows the signals we’ve been given and their raw spectra.
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Figure 2: Signals val2.dat and val3.dat and their raw spectra.

2.2 Wiener Filtering

We have signals signal{0,1,2,3}.dat provided for the second task, each 512 samples long. Using
Wiener’s Filter we should try and remove the noise from the signals. signal0.dat represents the noiseless
signal while the other signals have increasing levels of noise added to them. The transfer function of the
sensor is given by: )
— o lt/r —
r(t) = 5-¢ , where 7=16. (6)
Figure 3 shows the signals we’ve been given and Figure 4 shows the spectra of the signals.

2.3 Wieners Deconvolution

For the last subtask we’ve received (cropped) images of Playboy model Lena Forsen (previously Soder-
berg). Her portrait called Lenna has become the standard test for various image processing algorithms
and techniques. We’ve been given images of Lena that have been damaged by the addition of one of three
convolution kernels and increasing levels of noise. The instructions want us to use Wiener’s deconvolution
to restore the images as best we can making sure to take care of artifacting due to a non-periodic signal
by using either windowing or zero-padding. For the final challenge we we’re also given images that have
an additional periodic perturbation to them. We should try and remove the periodic perturbation from
the images using some form of frequency domain filtering. Figure 5 shows some of the images we’ve been
given and their matching convolution kernels.
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Figure 3: Signals signal{0,1,2,3}.dat and their convolution kernel.
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Figure 5: Images of Lena Forsen and their matching convolution kernels.




Spectra of Signals
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Figure 4: Spectra of signals signal{0,1,2,3}.dat.

3 Solution Overview

Another core mantra I want my stubborn brain to learn is to use already existing libraries and tools
to solve problems. Sure I think it would be much more educational to write all the presented methods
from scratch but that is unfortunately time consuming and thus not very practical. As this task doesn’t
really include bulk data gathering I also didn’t make use of any multiprocessing, threading or distributed
computing via say a package like ray. Besides the Python data science gold standard numpy and scipy I
also used scikit-image for its plethora of already implemented image processing algorithms. Especially
the submodule skimage.restoration was very useful as it already contains both Wiener’s filter and
Wiener’s deconvolution. The rest of the task was mostly about reading in the data, applying and adjusting
the filters etc. and plotting the results using matplotlib. As I didn’t do any parameter scans I didn’t
really se the use of taking a class-based approach. Oh I’d also like to mention that I used a sample rate
of 44.1 kHz for the spectral analysis of the signals. This is because I wanted to imagine the signals as
audio signals which I best understand. I also tried to have some fun with them by reconstructing the
signals from their spectra using Audacity.

4 Results

4.1 Spectra of Signals

The spectra of the signals val2.dat and val3.dat are shown in Figure 2. We can see very clearly
the prominent peaks in the spectra. It is also evident that peaks in val3.dat are much wider than in
val2.dat. I assume they are subject to leakage effects due to the signal end-points not matching this
making the signal non-periodic. I tested this theory out by performing a Ghetto Periodicity Fix™ where
I set the last value of the signal to the first value called I-point Fiz™ and the last 10 points to the first
value called 10-point Fiz™. The results are shown in Figure 6.



Signal val3.dat w/ Ghetto Periodicity Fix™

Signal val3.dat Spectra Absolute Difference
Signal
100 1 —— Original .
—— Fixed Periodicity 1-point 1074
Fixed Periodicity 10-point

— 80 A —
= 5

£ £
& 00 =,
[} [}
o T
> =}

B 40 H 10724
— —
o Qo
£ £
< <

20 -
}L J 7
0_
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Sample Frequency (Hz)

Figure 6: Spectra of signals val3.dat with and without the Ghetto Periodicity Fiz™.

We see that the stupid methods of I-point Fiz™ and 10-point Fiz™ actually work and make the
spectral lines much sharper. This would however be greatly improved using a proper windowing function
and with that we can move on to the next Figures where we do just that. Figures 7 and 8 show the
absolute difference between the bare unwindowed spectra and the windowed spectra of the two signals
val2.dat and val3.dat with different windowing functions applied. Do note that all the spectra have
been normalized for easier comparison.
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Figure 7: Spectra of signal val2.dat with different windowing functions applied.



Signal val3.dat Processed with Different Windows
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Figure 8: Spectra of signal val3.dat with different windowing functions applied.

A larger difference here is not bad since we actually want to remove the leakage effects. For the
val2.dat signal I think that mostly the choice of window does not matter as much. All windows besides
the Rectangular, Kaiser and Gaussian seem to produce similar results. Likewise for the val3.dat signal.
It is interesting to note that the Hann window seems to cause some weird oscillatory behavior around
the peaks in the spectrum. This is probably due to the fact that the Hann window has a sharper cutoff
at its edges. Similar behavior can be observed in the Rectangular window, however it is a bit difficult
to see due to the way the data is visualized. Since we’re mainly interested in peak widths and heights 1
came up with a better way to visualize the differences. Using calculated peak heights and widths, which
were computed at 0.1 relative height of the peaks, I plotted the differences between the peak dimensions
for various windows. The results are shown in Figure 9 for the val2.dat signal and in Figure 10 for the
val3.dat signal. Since the Rectangular window used here is essentially the same as no windowing I used
it to compare other windows to relatively.

Relative Peak Heights and Widths for Different Windows on val2.dat
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Figure 9: Differences in peak heights and widths for the val2.dat signal.



Relative Peak Heights and Widths for Different Windows on val3.dat
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Figure 10: Differences in peak heights and widths for the val3.dat signal.

We can see that using windows makes sense in both cases. While we do sacrifice some peak intensity
we gain in peak sharpness. The Rectangular window is the worst choice in both cases (as expected as it
is essentially no windowing). For signal val2.dat the Lanczos window seems to be the best choice as it
has the sharpest peak with the least intensity loss. The same holds true for the val3.dat signal. We can
see however that the performance across windows is quite comparable. Even the Kaiser window could be
a good choice if its width parameter [ is chosen correctly.

We can also take a look at how the signal’s spectra change when we only take a part of the sig-
nal. Figures 11 and 12 show the spectra of the signals val2.dat and val3.dat when only the first
256, 128,64, 32, 16 samples are taken. The plots present the spectra as well as the absolute and average
relative differences between the full signal and the partial signals.
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Figure 11: Spectra of signal val2.dat when only a part of the signal is taken.



Signal val3.dat Truncated to Different Number of Samples
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Figure 12: Spectra of signal val3.dat when only a part of the signal is taken.

I think it’s safe to say that the spectra at 16 samples are essentially useless, however doubling the
number of samples already gives us some noticable humps where the peaks should be. From this one
could at least estimate the frequency content of a signal with very few samples. Its interesting to see how
some of the spectra are broken due to non-periodicity of the samples used. This is especially evident in
the val3.dat spectra for 128 samples and in the val2.dat spectra for 256 samples. I think that it is
due to this effect that the matching average relative differences are comparably so high. All this could
be greatly improved by using a proper windowing function but I wanted to demonstrate the raw effect
of taking only a part of the signal.

For a little fun I also tried reconstructing the signals val2.dat and val3.dat from their spectra using
Audacity. This was done by reading the peaks and their relative intensities from the spectra and then
generating a signal from that. The results are shown in Figure 13 for the val2.dat signal and in Figure
14 for the val3.dat signal.

I think I managed to reconstruct the first signal well despite some obvious leakage but the second
signal is a bit of a mess with many additional peaks appearing in the spectrum. I was careful not to
mess with the normalization of the signal or anything that could maybe lead to resonant effects. Not
sure what happened here.

4.2 Wiener Filtering

T applied Wiener’s filter to the signals signal{0,1,2,3}.dat as instructed. I've plotted the results of the
filter applications with different window sizes in Figures 22, 23 and 24 for the signals signal{1,2,3}.dat
respectively. The results I think are quite good. Do note that the figures have been placed at the end
of the report due to their large size. From these plots we can see that the Wiener filter does a good
job at removing the noise from the signals at least in the first two cases. The third signal is heavily
distorted by the noise and the filter does its best to remove it, however the damage is already done.
For signall.dat its evident that a small window size is the way to go, as a larger window size starts
to essentially flatten the signal which means it looses all its small scale features. The same holds for
signal2.dat. For signal3.dat however a slightly larger window size seems to be the best choice. This
is probably due to the fact that the noise is much more prominent in this signal and a larger window size



Input Signal Reconstruction
val2.dat and its Recreation
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Figure 13: Reconstructed signal val2.dat from its spectrum.

allows the filter to better estimate the noise and extract the meaningful signal.

I wondered if multiple consecutive applications of the filter could improve the results. The results are
shown in Figures 25, 26 and 27 as before. I was surprised by how well consecutive applications of the
filter work on the first two signals. The noise is lowered consistently with each application. The third
signal however is so damaged that even multiple applications of the filter can’t really save it, however the
base shape it does manage to extract does get cleaner and cleaner.

Since Wiener’s filter is hardly the only one out there I wanted to present how a few other filters
perform on the signals. The results are shown in Figures 28, 29 and 30 again at the end of the report.
It’s worth explaining that Convolve with Uniform means convolution with constant signal and Down-
sample after AA means downsampling after anti-aliasing which is also known as decimation in signal
processing. The AA filter used was an 8th order type I Chebyshev filter. Performance across filters is
quite comparable for the first signal. I'm pleased to say that my favourite filter, the Savitzky-Golay filter
seems to always do the trick well. This is because it is designed to remove high frequency noise of a base
signal. This is really evident for the second signal. Surprisingly convolution with uniform values also
works exceptionally well, arguably yielding the best result for the last signal. Wiener’s Filter however
still gives good results across all signals.

I also played around with DSP in the context of Reverb and Delay effect algorithms. I find it hard to

visualize the effects on paper however as they are meant to be audible, less visual. If anyone is interested
they can eventually check out the code which will hopefully be available on my GitHub.
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Input Signal Reconstruction
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Figure 14: Reconstructed signal val3.dat from its spectrum.

4.3 Wiener Deconvolution

I applied Wiener’s deconvolution to the images of Lena that were provided. The results for the first
kernel are shown in Figures 15, where the kernel represents camera jitter.
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Figure 15: Wiener deconvolution applied to the Lena images convolved with the first kernel.

We can see that the deconvolution yields fantastic results. I was shocked to see how clear Lena’s face
could become after the deconvolution. We do spot a typical problem of the Fourier Transform however.
We can see that the deconvolution has introduced some ringing artifacts around the edges of the image,
which is again as a result of the image being non-periodic. This can be fixed with windowing which I
attempted to do using a Hann window in the last row. I wanted to see how different windows for the
purpose of image restoration. The results are shown in Figure 16.

12



Original Zero Pad Blackman Window

Gaussian Window

Hamming Window Lanczos Window Kaiser Window

Figure 16: Wiener deconvolution applied to the Lena images convolved with the first kernel with different
windowing functions.

From this image we can come to the conclusion that the best windows for the purpose of image
restoration are the Gaussian and Kaiser windows. They both do a good job at removing the ringing
artifacts without introducing vingetting too much. The other windows might remove the artifacts well
but distort the image in their own way in the process. The added Gaussian noise really does a number
on the image making it much harder to restore.

Moving on to the second kernel that represents motion blur we can see the results in Figure 17.
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Figure 17: Wiener deconvolution applied to the Lena images convolved with the second kernel.

The results are decent but it’s clear that this kernel is much harder to deconvolve. The motion blur is
much more prominent and the deconvolution can’t really remove it. At higher values of added Gaussian
noise the image becomes more or less unrecoverable. The deconvolution introduces some heavy periodic
perturbations to the image as a result of leakage effects. I investigated on how I could mitigate this using
frequency domain filtering. In the end I settled for a phase unwrapping algorithm by Miguel Arevallilo
Herrdez et al. which is described in [1]. The results are shown in Figure 18, where I've also included the
results of the windowed deconvolution for comparison.
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Figure 18: Wiener deconvolution applied to the Lena images convolved with the second kernel with phase
unwrapping.

I also experimented myself with just mindlessly editing the values of the Fourier Transform of the
image. I tried to remove the periodic perturbations by setting the values of the Fourier Transform to the
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average of the values in the spectrum. The results are shown in Figure 19.
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Figure 19: Lena images convolved with the second kernel with hand-edited Fourier Transform.

The results seem horrible. I can’t seem to identify which part of the spectrum contains the periodic
perturbations. I made the image darker, blurrier and I managed to make Lena look a bit more masculine.
Moving on to the last kernel that represents a diffraction grating we can see the results in Figure 20.
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Figure 20: Wiener deconvolution applied to the Lena images convolved with the third kernel.

The results are considerably better than for the second kernel. The deconvolution does a good job at
removing the diffraction grating and the windowing does a good job at removing artifacts. Even Gaussian
noise is less of a problem here. As I finish I took a look at the special images that have an additional
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periodic perturbation to them. The results are shown in Figure 21.
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Figure 21: Wiener deconvolution applied to the Lena images with additional periodic perturbation.

I tried incredibly hard to remove the periodic perturbation from the images to varying degrees of
success. The best results were no doubt achieved for the image convolved with the last kernel. I also
managed to use quite a few fancy tricks to improve the results which are explained in [2]. The second
kernel still presents the biggest challenge. I tried many different things but I could not clean the image up
as well as I would have liked. The first kernel was a bit easier to clean up but the periodic perturbation
was still quite visible.

5 Conclusion and Comments

I had many fun ideas planned which I had to cut out due to time constraints. Besides Audio SFX and
general DSP I wanted to give Steganography a try. I've heard that it is possible to encode information
into images using the least significant bits of the pixel values for example. Supposedly this can also be
done using a convolution kernel of sorts. Overall I'm happy with the results and I hope the report will
be well received...
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Figure 22: Wiener filter applied to the signal signall.dat.



Noiseless Signal

1.0 Size of Wiener Filter Window
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Figure 23: Wiener filter applied to the signal signal?2.dat.




Noiseless Signal

1.04 Size of Wiener Filter Window
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Figure 24: Wiener filter applied to the signal signal3.dat.
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Noiseless Signal

Multiple App]_ ications of 1.0 No. of Consecutive Applications
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Figure 25: Wiener filter applied consecutively to the signal signali.dat.
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Noiseless Signal

Multiple Applications of 1.0 No. of Consecutive Applications
Wienexr Filter on — Applied Ox  —— Applied 4x
. 12 d t 0.5 —— Applied 1x ——— Applied 5x
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Figure 26: Wiener filter applied consecutively to the signal signal2.dat.
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Noiseless Signal

Multiple Appl ications of 1.0 No. of Consecutive Applications
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Figure 27: Wiener filter applied consecutively to the signal signal3.dat.
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Noiseless Signal

Figure 28: Wiener filter
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1.0 Flavour of Filter
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and other filters applied to the signal signall.dat.



Noiseless Signal

Figure 29: Wiener filter

1.0 Flavour of Filter
: 0 0 —— Wiener —— Butterworth
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and other filters applied to the signal signal2.dat.
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Noiseless Signal

1.0 Flavour of Filter
. . : —— Wiener —— Butterworth
Different I_=11t¢]e-rsdApp11ed o5 —— Chebyshev Type II —— Downsample after AA
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Figure 30: Wiener filter and other filters applied to the signal signal3.dat.
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