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1 Introduction

In physics we often encounter time series data as we measure the evolution of a system in time. To-
day we’ll be having a look at one of the plethora of methods in our time series analysis arsenal, called
Auto Regressive (AR) models. Then we’ll apply this method to a few different datasets to study its
performance, applicability and behavior. AR models are a class of linear models that predict the future
values of a time series based on its past values. Based on the coefficients of the model, we can infer the
underlying dynamics of the system or find the signals spectrum.

An AR model of order p is defined as:
p
Xy = Z a; Xy + €, (1)
i=1

where X; is the time series at time t, a; are the coefficients of the model and ¢; is the error term which
we assume to be uncorrelated and with zero mean. In our idealized case, we’ll only have a short look
at how noise affects the model. For the coefficients a; we can without loss of generality divide by the
first coefficient, a1, which yields a model with a leading coefficient of 1. The order of the model, p, is
a hyperparameter that determines how many past values of the time series we use to predict the future
value. The model is commonly used in the context of machine learning but today we’ll be solving for the
coefficients more hands-on, with out explicit use of optimization algorithms.

A popular method to determine the AR model coefficients are the Yule-Walker equations. These are
a set of p linear equations that can be solved for the coefficients which are given by the autocorrelation
of the time series {X,;}. The autocorrelation is defined as:

P
Ty = Zairn,i , (2)
i=1

where r, is the autocorrelation at lag n. Essentially we need to solve a Toeplitz system of equations.
The system of equations is given by:
Ra=r, (3)

where R is the autocorrelation matrix, given as:

7"0 7"1 o rp—l
T1 To o Tp—2
R = : (4)
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and r and a are the autocorrelation vector and coefficient vector respectively, given as:

1 a1
2 a2

r=| . and a=| . |. (5)
Tp ap

Stability of the model is ensured by the roots of the characteristic polynomial of the model which must lie
inside the unit circle on the complex plane. This is something we’ll have to keep in mind when analyzing
the results, as any roots outside the unit circle will make the model unstable.

2 Task

2.1 Spectra of Signals

The instructions want us to plot the spectra of a few different signals that have been provided. The
main comparison should be between the spectra given by the AR model and the spectra given by the
Fourier transform. The FFT algorithm is truly a marvel of modern mathematics and computing so it
will definitely be a tough competitor. The signals that have been provided are plotted in Figure 1.

Signal val2.dat Signal val3.dat Atmospheric C02 from co2.da

380 1

370 4

w w
a -8
=} =)
L L

Amplitude
w
B
(o]

Amplitude

-0.54

C02 Concentration [ppm/v]
w
w
o

-1.01

320 1
-1.54

0 100 200 300 400 500 0 100 200 300 400 500 1960 1970 1980 1990 2000
Sample Sample Year

Figure 1: The signals that we’ll be analyzing in the first subtask.

The instructions also want us to explore the various properties of the AR model and how it behaves
when we change the order of the model as well as the number of points we use to evaluate the spectra.
The spectra can be calculated using the following formula:

1
S(f) = —
ST el

(6)

however I used the scipy.signal.freqz for ease of use and to avoid any mistakes. For anyone interested
further this article by Emanuel Parzen [1] goes more in depth.

2.2 Forecasting Signals

In the second subtask we’ve been provided some additional signals that we’ll be using in combination
with the signals from the first subtask to study the performance of the AR model in forecasting. The
supplied signals are plotted in Figure 2.
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Figure 2: The signals that we’ll be adding to our analysis in the second subtask.

They represent a stock’s value, ephemeris data for the moon and Wolf sunspot numbers. The instruc-
tions want us to forecast the signals using the AR model and compare the results with the actual data.
We can do so by providing half of the data to the model and then comparing the forecasted values with
the actual values of the other half. We should also have a look at how noise affects the model and the
forecasted values.

3 Solution Overview

Due to my speedrunning of these tasks this task lacks any extra bells and whistles. I implemented the
Yule-Walker method using numpy and scipy by making a class YuleWalker that can be used to fit the
model and evaluate PSDs. It takes inputs of the time series and the order of the model. I really like
classes in Python. They really serve well as containers for variables and their associated functions. The
class also has a method to forecast the time series using the AR model. The results are presented in the
following sections. Before we proceed we need to detrend some of the signals. This was most commonly
done by subtracting the mean of the signal, however I encountered two special cases. The first was the
CO2 atmospheric concentration signal to which I fit a square polynomial and subtracted the fit from the
signal. The second signal was the stock value signal which I detrended by the linear fit of the signal. The
signals with their respective trends are plotted in Figures 3 and 4.
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Figure 3: The CO2 atmospheric concentration signal with a square polynomial fit.
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Figure 4: The stock value signal with a linear fit.

4 Results

4.1 Spectra of Signals

As described above I used the scipy.signal.freqz function to evaluate the spectra of the signals. The
results are plotted in Figures 5, 6 and 7. The AR model seems to do a fantastic job at approximating
the spectra of the signals. The absolute scale of the spectra are larger than expected however they match
up relatively well with the FFT spectra. What is definitely visible are the wider peaks in the AR model
spectra compared to the FFT spectra. I think it makes sense to study the width of the peaks a bit more
in depth.
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Figure 5: The spectra signal val2.dat.
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Figure 6: The spectra signal val3.dat.
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Figure 7: The spectra signal co2.dat.

As stated above lets have a look at the width of peaks in the spectra. I evaluated the widths with the
help of scipy.signal.find peaks and scipy.signal.peak_widths on signals val2.dat and val3.dat.
The results are plotted in Figures 8 and 9. Plotted alongside are also the roots of the characteristic
polynomial for each model.
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Figure 8: The peak widths/heights of the spectra of signal val2.dat.
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Figure 9: The peak widths/heights of the spectra of signal val3.dat.

These plots are a bit more information dense so it makes sense to give some explanation. The left-
most plot shows the relative inverse peak height as compared to the FFT spectra. The inverse height
meaning that the values plotted present ﬁ This was done due to a massive range in the heights of
the peaks which generally depend on the or(fer of the filter as we can also see from the plot. There seems
to be a relatively steady downwards trend in the inverse peak height, which means that they are growing.
A similar trend can be seen in the middle subplot which represents the relative peak widths. Do note,
that there is no inverse in play here. We can see that the widths of the peaks narrow as the order of the
AR model rises. For low values of the AR model order the peaks are much wider than the FFT peaks.
In fact they more resemble bumps rather than sharp peaks. The right-most plot shows the roots of the
characteristic polynomial of the AR model. The main focus here was to check that all of the roots are
inside the unit circle which is also plotted. The roots seem to be stable. I find the way the roots spread
around in the complex plane incredibly fascinating.

For a better comparison between the AR model and the FFT spectra I plotted all the spectra on
the same plot. Do note here that the AR and FFT spectra have been normalized such that we look at
relative differences in scale, not absolute. The result is presented in Figure 10.
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Figure 10: All the spectra of the signals on the same plot.

absolute error is in the order of 1073.

Lastly lets have a look at the effects filter order and number of evaluation points (evaluation density)
have on the spectra. This time I've also included co2.dat in the analysis. The results are plotted in

Figures 11, 12 and 13.
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spectra of signal val2.dat.
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The bright colors in combination with the bolded grid really remind me of a 80s dance floor, I hope the
reader enjoys the visual experience. The plots show that both the filter order and evaluation density have
a significant impact on the spectra. One would naively expect that the absolute difference from the FFT
spectra would decrease with increasing filter order, however that is not the case. In the plot for val2.dat
and val3 we see that the absolute difference is lowest for the AR model of order 32. The evaluation
density has a lesser effect on the spectra, only comming into play when the density is very low and the
peaks are not well resolved. In addition to absolute differences I've also plotted the computational times
in comparison to the FFT spectra, where we can see that the AR model is comparable in speed to the
FFT algorithm at the filter orders that yielded the best results. The right-most plot is there again for a
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Figure 13: The effects of filter order and evaluation density on the spectra of signal co2.dat.

sanity check to confirm that all of the roots are inside the unit circle.

It would be interesting to what the resolving power of an AR model is. What I mean by this is how
close can to peaks be in the spectra for them to still be resolved. I did a little parameter scan for a couple
of different values of filter order, peak separation distance and spectra evaluation density. The results of
the scan are plotted in Figure 14. The FFT spectra from the scan test signals are plotted in the Figure

15.
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Figure 14: The ’resolving power’ of the AR model. Unresolved is colored in purple.
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Figure 15: The test spectra by FFT from the resolving power scan.

All resolving powers are compared to how far apart the peaks are in the FFT spectra. This plot



represents one of my major disappointments during this task in that, there is no dependence on the
filter order, at least not in the range that I scanned. The results are the same for all filter orders.
We can however see that in the range that I've provided only a small section of the parameter space
contains peaks that actually managed to resolve. The majority of the peaks were not resolved to my
great disappointment. I inspected the spectra for any possible errors but they truly do seem to not
resolve. The subset of the resultant spectra are plotted in Figure 16.
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Figure 16: The subset of the spectra, where we can see most of the peaks are unresolved.

From this scan I was able to make a neat looking plot of execution times. It doesn’t really have all
that much value now that we’ve seen that the filter order doesn’t really matter. The plot is presented in
Figure 17.
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Figure 17: The execution times of the AR model in comparison to the FFT algorithm.
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4.2 Forecasting Signals

As the instructions stated I used the AR model to forecast the various signals that were provided..
varying degrees of success. The simpler signals from the first subtask were forecasted relatively well,
excluding the fact that no matter what I did I could not get rid of an exponential decay of the overall
amplitude of the forecasted signal. The results for the forecasted signals from the first subtask are plotted
in Figure 18, 19 and 20.
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Figure 18: The forecasted signal val2.dat.
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Figure 19: The forecasted signal val3.dat.
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Since I was not able to remove the exponential decay trend I fitted an exponential decay and tried to
find the order of AR model that would provide the smallest decay rate. The upper-right plot contains the
best case result for the forecast of the signals. Where we can see that all have been predicted reasonably
well. The further we go in time the worse the forcasts become which can also be seen on the plots of the
absolute distance from the control signal, which is made from the second half of the data. Pattern and
shape-wise the forecasted signals seem very similar to the control signals. The only part of the forecast
I find lacking (besides the decay) is for the co2.dat signal where the forecasted signal lacks the overall
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Figure 20: The forecasted signal co2.dat.

larger oscillations that still seem to be present in the detrended signal.

The forecasted signals from the second subtask were definitely more challenging and I'm less happy

with the results I was able to produce. The results are plotted in Figure 21, 22 and 23.
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Figure 21: The forecasted signal borza.dat.

Forecasted Signal luna-detrended.npz

Best AR Model was 160th Order

Input Data Abs. Err. 100th Order
160th Order (Best Forecast) Abs. Err. 160th Order
Positive Peaks Abs. Err. 240th Order
Exponential Fit Abs. Err. 320th Order
Abs. Err. 40th Order ~——— Envelope Max Amplitude

Abs. Err. 80th Order Max Amplitude Std. Dev.
Abs. Err. 60th Order —— Decay Rate
Abs. Err. 80th Order Decay Rate Std. Dev.

Diff. from Second Half of Signal

Abs.

Abs. Diff. from Second Half of Signal

T T T T v
0 200 400 600 800 1000
Sample

Decay Rate

1000
500
0
Exponential Fit: y=a-el*
-500 a=226e+01 +6.54e +07
b=3.68¢-03%236e~13
0 100 200 300 400 560 600 700
Signal Decay Parameters
0.005 -
L 105
0.000
-0.005 1 F10t
[
2
©
o= no sense to fit a
> 0.0101 cay envelope to the data F10°
o
(=}
-0.015
L 102
-0.020
L 10
-0.025
4‘4 6‘6 8’8 1i0 1"76 2(‘)4 35‘2
Order
!
il
10
-151 Exponential Fit:
a=1.35e+01+832e+01
b= —6.19e—04 +4.57e - 16
0 500 1000 1500 2000
Signal Decay Parameters
1
~0.0005 2.4x10
2.2x10*
-0.0006 1 2x10"
1.8x10*
~0.0007
1.6x10!
~0.0008 1.4x10*
1.2x10*
-0.0009 4

40 60 80 100

160 240 320
Order

Figure 22: The forecasted signal moon.dat.
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Figure 23: The forecasted signal sunspot.dat.

I’d like to make a note that the signal luna.dat was composed of two coordinates, the Right Ascen-
sion and Declination of the moon. For simplicity I combined these two with the root of the sum of the
squares. Out of all the signals provided in the second dataset I think the Wolf sunspot numbers were
forecasted the best. There seems to be relatively sensible continuity in the forecasted signal and again
we can fit a somewhat weak exponential decay trend to the forecast. We can also clearly see from the
plotted parameters of the decay fit for various AR model orders that the decay rate is smallest somewhere
in the middle. The absolute worst results were for the stock value signal. Even though I tried hard to
remove any existing trends the forecasted signal is not continuous as it contains a large gap between the
last point of the input signal and the first forecasted point. The shape seems to be somewhat similar
to what we would expect except that when having a look at the absolute difference we find that it is
absolutely abysmal, reaching values of 103. Fitting an exponential decay here also made little sense but
I did it anyway, only to find that the best decay rate was actually positive which really does not make
sense. The moon signal was forecasted relatively well I suppose. Due to the asymmetry of the signal
(despite the detrending) the forecasted signal is biased towards the positive values and with errors to-
wards the end of the forecast reaching above 10°, I'm not sure that this forecast would be the most useful.

Due to being strapped for time I was not able to do any further analysis on the forecasted signals,
barring a quick look at how adding noise to the input signal affects the forecast. I evaluated this for only
the simplest signal val2.dat, for three different values of noise standard deviation. The results are plotted
in Figures 24, 25 and 26.
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Figure 24: The forecasted signal val2.dat
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with added noise of standard deviation 0.1.

=
2

=
3

i
<

L 10%

A
-4

A
R

=
=3

2
[ |
‘ |
il
Forecasted Signal val2.dat ‘ il
from Noisey Input Data LRl || | M
Best AR Model was 48th Order l
Normal Noise with 0=0.5 | | ' ‘ ” ‘| il
|
0 I !

—— Clean Input Data Abs. Err. 20th Order l H | I l

7 Noisy Input Data Abs. Err. 32th Order

—— 48th Order (Best Forecast) Abs. Err. 48th Order | |
Positive Peaks Abs. Err. 64th Order 21! ‘ |

---- Exponential Fit Envelope Max Amplitude i | | " | |

~—— Abs. Err. 8th Order Max Amplitude Std. Dev. ‘ \

—— Abs. Err. 16th Order —— Decay Rate [ |1 1| [exponential Fit: y=a-evx
Abs. Err. 12th Order Decay Rate Std. Dev. i’y [ a=4.74e+00:+1.32e+01
Abs. Err. 16th Order b= -550e-03+174e—12

o 100 200 300 460 500
Abs. Diff. from Second Half of Signal Signal Decay Parameters
ﬁl ’ -0.01
1 “‘ ‘ H
MU
“' ‘ | | (It l 1 -6.02
! |
'rh ‘ hUW \ |‘
[
E -0.03
| 1 -
©
§ -0.04
-0.05
10 -0.06
v v v v v " s : : :
] 50 100 150 200 250 8 12 16 20 32 48 64
Sample Order

15

Decay Envelope Max Amplitude

Decay Envelope Max Amplitude

with added noise of standard deviation 0.5.



2
Forecasted Signal val2.dat
from Noisey Input Data 11
Best AR Model was 64th Order
Normal Noise with o=0.75 ‘ l ' l
o |
—— Clean Input Data Abs. Err. 40th Order
Noisy Input Data Abs. Err. 64th Order H
—— 64th Order (Best Forecast) Abs. Err. 96th Order
Positive Peaks Abs. Err. 128th Order -14
-- Exponential Fit Envelope Max Amplitude
Abs. Err. 16th Order Max Amplitude Std. Dev.
Abs. Err. 32th Order —— Decay Rate ol Exponential Fit: y=a-ebx
Abs. Err. 24th Order Decay Rate Std. Dev. a=23%+00+1.17e+02
Abs. Err. 32th Order b=-428e-03£223e-12
0 100 200 300 400 500
Abs. Diff. from Second Half of Signal Signal Decay Parameters
-0.0025
7 . U
o ' | l I “ ‘ }‘ T 1l N4 -0.0050 F1o°
o It M w RN -‘\‘\"‘ <
H \‘I \ u S
° | ‘ b
\ ‘\‘ ‘ ‘ h -0.0075 4 :
H 101 V \ | | \ ‘ a
© H
T 8 -0.0100 1 M
T
< & £
S, ., -0.0125
3 s 8
[ k101 o
= P >
S S -0.0150 4 2
& &
. 10 4
y 10 -0.0175 >
sl
o g
e o
. -0.0200 4
8 1o
= 10
T y T T T T =0.0225 e T y T
] 50 100 150 200 250 16 24 32 40 64 96 128
Sample Oxder

Figure 26: The forecasted signal val2.dat with added noise of standard deviation 0.75.

The trend I spotted with the addition of increasing noise is that the best AR model order for the
forecast rises with the increasing standard deviation of the noise. In all examples the forecasted signal
looks correct to the signal before it but really lacks in amplitude despite my best efforts. We can see that a
stronger value of noise really diminishes the amplitude of the forecasted signal and with that the absolute
difference from the control signal rises. Overall even with a ¢ = 0.75 the forecasted signal still seems
to match the shape of the input signal. Perhaps there exists a better way to adjust for the exponential
decay. Our professor included an article called Why Yule- Walker Should Not Be Used for Autoregressive
Modeling [2] which states that the Yule-Walker method is not the best method for AR model fitting and
suggests a look at the Burg method, which will unfortunately have to be left for another time.

5 Conclusion and Comments

Overall I'm happy with the results that I was able to produce however I do feel that I could have done
more. Especially for forecasting of signals where half of the results I got were not really satisfactory. One
thing I'd definitely take a look at had I the time is the Burg method for AR model fitting. I’d also maybe
like to do some more meta-studies on AR model forecasting, eg. how far into the future is it possible to
reasonably forecast a signal. The task also lacks any really original data to analyize which is a bit of a
shame. On to the last task! Oh and whoever thought of exporting dates firstly in the format JUN19, and
secondly for multiple years, cause me quite the headache.
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