University of Liubljana
Faculty of Mathematics and Physics

1 Al
i i
I H
I i

Department of Physics

Machine Learning: Classification with
Neural Networks

13. Task for Model Analysis I, 2023/24

Author: Marko Urbanév
Professor: prof. Dr. Simon Sirca
Advisor: doc. dr. Miha Mihovilovi¢

Ljubljana, August 2024

Contents

1 Introduction 1
1.1 Machine Learning and Neural Networks 2
2 Task 3
2.1 Classification with Neural Networks 3
2.2 Deep Dream and Class Maximization 4
3 Solution Overview 4
4 Results 4
4.1 Classification with Neural Networks 4
4.2 Deep Dream and Class Maximization 8
5 Conclusion and Comments 9
6 Large Figures 11

1 Introduction

Machine learning is one of those things that seem like a futuristic, near-magical, technology, however that
is not the case anymore. Use of machine learning algorithms has become routine and common place in
many fields of science and industry. Many people are not even aware that they constantly encounter ma-
chine learning algorithms in their everyday life, despite the fact that more and more people talk about the
fabled algorithms that are prevalent on the internet and social media. It is indeed true that most search
algorithms like Google’s or recommendation algorithms like Netflix’s are based on machine learning, but
the use of machine learning is not limited to these applications. Machine learning is now practically
omnipresent.

I consider myself a proponent of data privacy and online safety so I'd like to perhaps further elaborate
on the use of machine learning algorithms in the above mentioned contexts of search and recommendation
algorithms. Take Netflix for example. Netflix is an online streaming service for movies and TV shows.
Due to its massive library of content it can be hard for users to find something they would like to watch.
This is where recommendation algorithms come in. These work by analyzing the user’s watch history
and preferences from which they can try to predict what the user would like to watch next [1]. This on
its own is not a bad thing but the issue lies in what other data is gathered for use in these algorithms.
Netflix for example tracks not only which content you watch and for how long but also from which device
you view the content, at what time of day and so on. All this data is used to create something Netflix
calls Context [2]. The algorithms that power these recommendations are called contextual bandits, which
are a type of reinforcement learning algorithm. We’ll discuss the specifics of machine learning algorithms
a little later. But Netflix plans to be even more invasive than just that. For example in the paper Using
Navigation to improve recommendations in real-time [3], authors describe how they’d like to forecast
something called the user’s intent with which they would attempt to know what the user would like to
watch before the user actually provides any input. Since this paper was published in 2016, it is likely
that Netflix has already implemented this feature to some degree. This is just one example of how ma-
chine learning algorithms are used to gather data on users. Oh it’s worth mentioning for all those that
share Netflix accounts with their friends or family, that Netflix is also actively developing and improving
machine learning algorithms to recognize account sharing [4].

Moving on to Google. Google is foremost a search engine which is used by billions of people every
day. Google uses machine learning algorithms to provide the best search results for the user and has been
doing so for quite some time. In the year 2015 they introduced a deep learning system called RankBrain
which was designed to improve search results for queries that Google had never seen before. RankBrain
works by evaluating past search queries and the results users clicked on to determine how best to improve
search results for future queries [5]. From 2018 onwards, Google uses neural networks in its search algo-
rithms and in 2019 Google introduced BERT [6], a neural network-based technique for natural language

processing.

As the last contribution to my small rant on machine learning algorithms in everyday life, I'd like to
mention possibly the worst offender of them all, TikTok. TikTok is a social media platform where users
can upload short videos of themselves. It’s content is served up entierly by machine learning algorithms
on the For You page. The For You page is a feed of videos that the algorithm thinks you would like to
watch. The service again collects copious amounts of data on its users and since it is owned by a Chinese

company, there are concerns about data misuse and privacy [7]. So much so, that the US government is
trying to push a bill that would force the sale of TikTok to an American company, which would better
ensure that data on US citizens does not leave the country [3]. Besides the privacy concerns there are

also concerns about the content that is served up by the algorithm. In a sense the algorithm is maybe
too good at what it does, which results in TikTok’s mostly young users being exposed to harmful or
even violent content, mostly in the form of videos that depict self-harm and suicidal ideation or their
glorification as stated in a report by Amnesty International [9]. Another interesting phenomenon is what
has come to be known as algospeak, where users that are aware of the algorithm’s censorship of certain
words and phrases, try to circumvent the censorship by using different words or phrases that mean the
same thing. For example, “unalive” instead of “kill”, “le$bean” instead of “lesbian”, “sewer slide” in-
stead of “suicide”. Evading censorship is nothing new but it is interesting to see how the use of such
words is spreading to platforms that do not censor them and even to everyday language [10]. These are
examples of the most harmful uses of machine learning algorithms and with the advent of Large Lan-
guage Models (LLMs) like GPT-3 and GPT-4, the potential for misuse and misinformation is even greater.

1.1 Machine Learning and Neural Networks

Enough about the bad things. It’s good to make people aware of the potential dangers of machine learning
algorithms but it’s also important to talk about the good things. Machine learning has the potential to
revolutionize many fields or already has. Today’s example will be about classification with neural networks
using the MNIST dataset. Let’s briefly list the basic types of machine learning algorithms. They are:

e Supervised learning:

— Classification: Used for sorting data into different classes/categories. For example: Recogni-
tion of handwritten digits.

— Regression: Used for modeling the relationship between variables. For example: Predicting
the price of a house based on its size.

e Unsupervised learning: Used for finding patterns in data. For example: Clustering of data points.

e Reinforcement learning: Used for training agents to make decisions. For example: Training a robot
to walk.

In physics we mostly use supervised learning algorithms for data analysis. One of the most important
discoveries in which supervised learning was used is the discovery of the Higgs boson at the Large Hadron
Collider in 2012. We’ve even had a go at this ourselves at the end of the pre-graduate subject Matematical
Physics Practicum where we studied the use of neural networks and decision trees for the classification
of the Higgs boson.

How do machine learning algorithms even work? In general we can imagine we have a set of parameters
D = {(xg, yk)}kN:1 where zy, = (x1,...,7M) is a vector of M features (representation of the data) and yy
is the corresponding label (class/category). Values of (xy, yx) are called samples and are independent and
statistically distributed according to some unknown distribution P(-, -). The goal of machine learning is
to find/learn a function i : R? — R that minimizes the loss function with witch we determine how well

h performs on the data. The loss function can be defined in general as:

N
£(h) = 1 3" Ly, b)), 1)
k=1

where L is some smooth function that describes the difference between the true label y;, and the predicted
label h(xz)). We sample the data D randomly and divide it into two sets: the training set and the test set.
The training set is used to train the model and the test set is used to evaluate the model’s performance.

The model is trained by minimizing the loss function using various optimization algorithms. The most
common optimization algorithm is the gradient descent algorithm.

In the case of neural networks, we can imagine we have a mesh of interconnected neurons that are
organized into layers. Each neuron is connected to every neuron in the previous layer and every neu-
ron in the next layer. The first layer is called the input layer, the last layer is called the output layer
and all layers in between are called hidden layers. Hidden layers unfortunately present somewhat of a
black boz to us, although there are methods we can use to try and understand what is happening in
the hidden layers. We’ll take a look at the end of this task. There exists a plethora of different sub-
types of neural networks such as convolutional neural networks (CNNs), which are good at recognizing
patterns in images, recurrent neural networks (RNNs), which are good at understanding speech and so on.

The basic building block of a neural network is the perceptron, which is described by the equation:
By = o(wlx +), (2)

where w is the weight vector, b is the bias and o is the activation function. The activation function is a
non-linear function that introduces non-linearity into the model. The most common activation functions
are the sigmoid function, the hyperbolic tangent function and the rectified linear unit (ReLU) function
[11], which are given as:

o) = 1)
tanh(z) = % , (4)
ReLU(x) = max(0,x) . (5)

Nowadays the ReLLU function is the most commonly used activation function since it is computationally
efficient and is more resistant to the so-called vanishing gradient problem that can occur during training
of the model.

However it is more susceptible to the opposite problem known as the exploding gradient problem. We
won’t go into the details of these problems here as they are not really that important for the understanding
of the task. We train the neural network with an optimization algorithm such as the gradient descent
algorithm and backpropagation which is used to calculate the gradient of the loss function with respect
to the weights and biases of the network. The last thing we have to specify is a loss function. The most
common loss function for classification tasks is the cross-entropy loss function which is given as:

N
D e Tos(rass(21)) + (1~) 108(1 — P ()] (6)
k=1

L(w,b) = —

We can also use something simpler like the mean squared error loss function, given as:

1 N
L(w,b) = + D (o = By (an)? (7)

k=1

2 Task

2.1 Classification with Neural Networks

The instructions task us with classifying the MNIST dataset of handwritten digits using a neural network.
We are to explore various architectures of the neural network and values for hyperparameters such as
the learning rate, the number of hidden layers etc. We need to look at which numbers are the hardest to
classify and why. We can also try to feed the trained model with images that are completely different to
see how the model responds. Figure 1 shows the average image of each digit in the MNIST training set.

Average Digits from the MNIST Dataset

Digit: © Digit: 1 Digit: 2 Digit: 3 Digit: 4
Digit: 5 Digit: 6 Digit: 7 Digit: 8 Digit: 9

Figure 1: Average image of each digit in the MNIST training set.

2.2 Deep Dream and Class Maximization

The second part of the task is to use the trained model to generate images that maximize the output of
a certain class. This is done by using the gradient of the output of the model with respect to the input
image. This is called class maximization. We can also study which input minimizes the loss function
of the model the most. This is called deep dream, where we can see which features the model is most
sensitive to.

3 Solution Overview

I started this project very motivated back during the semester. I was certain that I was going to make
my own implementation of a neural network and that it was going to be done in CUDA C++. This
turned out to be very naive of me as I certainly did not think about the scope of such a project. Thus
the Task was put on hold until the summer, where I promised myself to take a more pragmatic approach.
Besides using the standard libraries for data manipulation and visualization like numpy, matplotlib and
scipy I also used torch for the neural network implementation. and scikit-learn for model evaluation.
I used the torch.nn module to define the neural network and the torch.optim module to define the
optimization algorithm. I tried to make coherent information dense plots to present the results of the
various models. The results are presented in the next section.

4 Results

4.1 Classification with Neural Networks

Jumping directly into the results I've defined models with various values for hyperparameters. All these
models share the same architecture which is a neural network with one hidden layer. All the layers are
linear layers with a ReLLU activation function. The loss function used is the cross-entropy loss function
and the optimization algorithm used is the Adam optimization algorithm. The models were trained for
10 epochs, split into different batch sizes. The models are presented in Table 1 as well as their training
and testing accuracies rounded to three decimal places. Figures 9 to 19 show the ROC curves for each
model for each digit with it’s corresponding AUC score. Added are also the micro and macro average
ROC curves. The micro average gives equal weight to all classes and shows average performance across
all predictions while the macro average shows the average performance for each class.

The ROC (Receiver Operator Characteristic) curves are a good way to visualize the performance
of the model at binary classification. Since we have multiple classes I plotted a ROC Curve for each
class. The AUC score is a measure of how well the model can distinguish between classes. The AUC

score ranges from 0 to 1 where 0.5 is random guessing and 1 is perfect classification. The AUC score is

calculated by taking the area under the ROC curve (hence the name).

Model | Learning Rate | Hidden L. Size | Batch Size | Training Acc. | Testing Acc.
0 0.001 784 64 0.998 0.982
1 0.001 784 256 0.998 0.982
2 0.1 784 64 0.703 0.706
3 0.1 784 256 0.918 0.915
4 0.1 784 16 0.404 0.407
5 0.001 10 256 0.926 0.923
6 0.001 5 256 0.776 0.784
7 0.001 1 256 0.257 0.257
8 (S) 0.001 1 256 0.187 0.189
9 0.001 7840 256 0.998 0.982
10 0.001 78400 256 0.995 0.979

Table 1: Hyperparameters and Results of the various models.

I was shocked to see how well the models performed. So much so that I had doubts about the validity
of the results, but upon further inspection I did not find any errors in the code. THe models with the best
performance were models 0 and 1. These models had the highest training and testing accuracies. Model
9 performs exactly the same at the cost of a much larger hidden layer size which meant that training took
longer. We can see that hidden layer size does not directly translate to accuracy as in model 10 (which
took even longer to train) the accuracy is lower than in model 9. From this we can conclude that it does
not make sense to have a massive hidden layer, at least not for this dataset.

Commenting more on the topic of hidden layer size we can see how reducing the layer size to very
small numbers greatly diminishes the performance of the model. It is interesting that model 5 performed
as well as it did but what was more shocking was model 6, with a hidden layer size of only 5 neurons, yet
still managed to reach ~ 77% accuracy. Even having just one neuron in the hidden layer (model 7) the
model still managed to reach ~ 25% accuracy which is still better than random guessing. Model 8 is a
special case. The “S” I've added next to its name is there to signify that the output layer has a sigmoid ac-
tivation function. Clamping the values of the output layer further worsened the performance of the model.

In the case of models 2, 3 and 4 we see that we can somewhat improve the performance of a model
with a higher learning rate by increasing the batch size. Model 3 already performs quite well with a
learning rate of 0.1 and a batch size of 256. Model 4 was created to further test this hypothesis and
we can see that reducing the batch size to 16 severely impacts the accuracy of the model lowering it to
around 40%.

From the ROC Curves we can identify that some of the poorer performing models practically have
no idea on how to classify certain digits. For example in Figure 13 we can see that the model really has
no idea on how to classify the digits 2,5,6 and 8. I assume this is a consequence of these digits being
quite similar to each other which causes the model to get confused pretty quickly. This point is taken to
the extreme if we take a look at model 8 in Figure 17 where the model doesn’t really have a clue on how
to classify most of the digits. It only managed to somewhat correctly classify the digits 1 ad 8 which are
the two most distinct digits in the dataset. This means that the testing accuracy of 18.9% can actually
be quite deceptive as the model is only really marginally useful for the classification of 2 digits. We can
of course also see the opposite effect in well performing models, especially in model 0 in Figure 9 where
the model reaches an AUC score of 1.0 for the digit 1 and 0.99 for the others. This means that the model
is very good at distinguishing between the digits.

I plotted the values of the loss function for most of the models in Figure 2. We can see that the
loss function decreases very rapidly in almost all cases. The exceptions are models 7 and 8 where the
optimization algorithm has a difficult time efficiently minimizing the loss function due to there being
only one neuron in the hidden layer. This issue with optimization is no doubt the reason behind the
poor performance of these models, which makes perfect sense. One could imagine that we can boil down
the features from the input layer of size 784 to a hidden layer with say 10 neurons but boiling all those
features down to just one neuron is not really feasible. Another interesting effect can be seen in model

4 where the loss function decreases rapidly but then starts to show signs of increasing again. This is
most likely a sign of overfitting. While the effect is not as pronounced I still find that explanation very
plausible, since this was the model with the smallest batch size and the highest learning rate. This means
that the model went through many training steps with a high learning rate which can quickly change the
loss function.

Losses for Different Models

Model © Model 1 Model 2 Model 3 Model 4
24 2 150 4 150 4
100
? ? o (1007 100 1
o4 o4l o o o
= = - 504] =
50 4 50 4
0‘ T T 01 T T T 01 T T 0‘ T T T Ch T T
0 5000 0 1000 2000 [0 5000 [0 1000 2000 0 20000
Training Step Training Step Training Step Training Step Training Step
Model 5 Model 6 Model 7 Model 8 Model 9
204 ol 2.50 A 2.3 2
»n 1.5 0 0 2.254 05 5] 0
0 0 1.54 0 0 ‘- 0
o 5] o o o 1]
- 1.0 - —1 2,00 - -
1.0 2.1
0.51 1.75
. " T 5 . " " " . . " . 01, . .
¢} 1000 2000 0 1000 2000 [¢] 1000 2000 [¢] 1000 2000 [¢] 1000 2000
Training Step Training Step Training Step Training Step Training Step

Figure 2: Loss function values for the various models, trained for 10 epochs at different batch sizes.

Since we’ve discussed the performance of the models at different values of hyperparameters I performed
a quick parameter scan for different values of the learning rate and size of the hidden layer. The results
of which are presented in Figure 3. The heatmap shows the training and testing accuracies for each
combination of hyperparameters.

Hypexrparameter Sweep on Learning Rate and Hidden Layer Size

Training Accuracy Test Accuracy
1.00 1.00
7e+04 7e+04
3e+04 3e+04
le+04 1 1e+04
y 7er03 1 y 7e+03 1
3e+03 > 3e+03
5 0.90 g By 0.90 o
S 2e+03 @ 5 2e+03 3
< Be+02 { 3 S Be+02 i
T 2e+02 2 T 4e+021 3
. o o
2 2e+02 w0 T 2e+02 <
W 8e+01 E' 4 8e+01 t‘,
o 5 o @
o devo1 0.808 o 4e+01] 0.80 1>
N 2¢+01] 0.70 & N 2e401 0.70
I 0.60 O 0.60
9 9
e+09 0.50 e+00 0.50
4e+00 0.40 4e+00 0.40
2e+00 0.30 2e+00 0.30
1e+00 0.20 1e+00 0.20
0.10 0.10
P FT TP PP RIIII IS I TI TP LI PIII IS
,y?/ (I/Q; ,,’Z D‘Z ‘OQ' ,\/Qz q/Z ,bQ/ b‘z b?: '\VZ (I/Q; ,,’Qz D‘Z ‘0‘2/ ,\/Q; ,\VQ/ /I/Q; f)}% VQ/ ‘OQ' ,\/Qz q/Z ,b‘Z/ b‘z b@ ,y?/ (I/Q; ,,’Z D‘Z ‘OQ' ,\/Qz
Learning Rate Learning Rate

Figure 3: Heatmap of the training and testing accuracies for different values of the learning rate and
hidden layer size.

From the heatmaps we can see that it is important to have a reasonably large enough hidden layer
size. The model’s accuracy seems to be mostly independent of the middle values of the learning rate
range, provided the hidden layer has enough neurons. It was very difficult to normalize the colormap
in such a way that this can be easily seen that is why I decided to use a combination of a linear and
logarithmic normalization. This way we can se that very low learning rates still can yield fantastic results
but only for very large hidden layers. Large values of the learning rate seem to consistently diminish the
performance of the model. The best tresults were obtained with a learning rate of 0.0004 and a hidden
layer size of 7131 neurons.

I also tried a few models with more layers but the performance increases were marginal if any. The
results of these models are presented in Table 2, with the ROC curves in Figures 20 to 22. The missing

models are not presented as they were attempts at using the MSE loss function as well as Negative Log

Likelihood for the loss function. The models performed quite poorly and I did not have the time to
further investigate the issue.

Model | L. 1 Size | L. 2 Size | L. 3 Size | Training Accuracy | Testing Accuracy
12 784 392 196 0.996 0.979
13 784 1568 3136 0.997 0.981
15 784 784 784 0.995 0.979

Table 2: Hyperparameters and Results of a 3 Hidden Layer Neural Network.

Now that we’'ve discussed the performance of the models we can have a look at how the models
classified the digits. I evaluated this for models 0 and 7 as they represent the best and worst performing
models respectively. The results are presented in Figures 4 and 5. The histograms show which as which
digits each digit was incorrectly classified as (essentially a look at all the predicted labels for a certain
true label, without the number of times it was correct).

Model O: Histogram of Predicted Classes

Class 0 Class 1 Class 2 Class 3 Class 4
8 4 10 40 20
6 3 81 301 15
+ + + 6 + +
5 c c < c
S 44 3524 > 3 204 3 101
o o ° 41 o o
o © o © o
21 14 2] 10 4 54
0- 0-— 0- 0- 0-
0123456789 ©123456789 ©123456789 ©123456789 ©123456789
Predicted Class Predicted Class Predicted Class Predicted Class Predicted Class
Class 5 Class 6 Class 7 Class 8 Class 9
3 20 12 15 8
2 10 124
154 6
= 27 " & 81 o 104 -
c c c c [=4
314 3 104 3 61 3 71 3 44
o o o o o
[o o 4 J_l_‘ [o
I I I L 54 H H 2
0 2 2
o 0 ol L o H o
0123456789 0123456789 0123456789 ©123456789 0123456789
Predicted Class Predicted Class Predicted Class Predicted Class Predicted Class

Figure 4: Histogram of the predicted labels for each true label for model 0.

Model 7: Histogram of Predicted Classes

Class 0 Class 1 Class 2 Class 3 Class 4
1000 80 500 600 800
] 1 500
800 60 4 400 e 600
£ 600 = £ 300 = b=
3 3 404 3 3 300 3 4001
S 400 S 8 200 S 500 | 3
200 | 209 100 1004 2001
0 o o o 0
0123456789 0123456789 0123456789 0123456789 0123456789
Predicted Class Predicted Class Predicted Class Predicted Class Predicted Class
Class 5 Class 6 Class 7 Class 8 Class 9
600 300 1500 800 1500
500 1 250 1250 1250
600 4
400 4 4 2004 4 1000 " 4 1000 4
c c c c c
3 300 3 150 3 750 3 400 3 750
© 200 © 1001 © 500 © © 5004
200 4
100 50 - 250 250
0 0- [R o H— —_— o=
90123456789 0123456789 0123456789 ©123456789 ©123456789
Predicted Class Predicted Class Predicted Class Predicted Class Predicted Class

Figure 5: Histogram of the predicted labels for each true label for model 7.

We can see that there is a drastic difference between the two models. Model 0 has an overall very
low number of misclassifications. It mostly misclassifies the digit 3 as 5 and 4 as 9. These are quite
acceptable misclassifications as some of the images in the dataset are truly very vague even to the human
eye. Model 7 on the other hand shows that it is horrible at classification. As seen in Figure 16, the ROC
curves show that the model guesses randomly for most digits with the exceptions being the digits 1, 4 and
7. The histogram is consistent with these results. We can see that the digit 1 is the least misclassified
digit. But that is not really saying much as the model also likes to misclassify other digits as the digit 1.

I feed the trained model with images that are completely different to see how the model responds.
The results are presented in Figure 6. The images are some mouse-drawn shapes that could maybe be
interpreted as digits and an image of my cat Happy and a picture of my friend getting roasted at General
Relativity class.

Letter A Infinity Face-thing Happy the Cat Physicist
% -
Model Output Model Output Model Output Model Output Model Output
10° § 10° 10° 10° 10°

1072 4 1073 4 1073 4 1073 4 1073

107 4 107 4 107 4 107 107 4
+ 10774 + 10774 + 10774 + 10774 + 10774
3 > 3 =3 =]
B0z 5102 81012 B 1022 5102
3 10715 4 3 10715 4 3 10715 4 3 10715 4 3 10715

10-18 4 10-18 4 10718 4 10-18 4 10718

10721 4 10721 4 10721 4 10721 4 10721 4

1024 1024 1024 1024 1024

01234567829 0123456789 ©123456789 01234561789 ©1234567829
Class Class Class Class Class

Figure 6: Images fed to the trained model and the corresponding predicted class probabilities.

The model has a strange tendency to call more or less everything a 5. In two cases it called the image
a 2, in case of the image of the letter A and the image of a mouse-drawn face. The cat is a definite 5 per
my model while the image of my friend is a bit more difficult to interpret as the model gives high proba-
bilities to the digits 3,5 and 7. The model certainly got one thing right and that is that he’s an odd fellow.

4.2 Deep Dream and Class Maximization

Since model 0 has been our go-to due to it’s stellar performance let’s allow it to dream up the ideal
representation of each digit according to it’s knowledge. This is what we called class mazimization in
the introduction. The results are presented in Figure 7.

Model O: Ideal Inputs for Each Class
Class 0 Class 1 Class 2 Class 3 Class 4

bl]

2

Figure 7: Class maximization for each digit according to model 0.

Class 8 Class 9

i@; .HE
! g

I plotted the average member of each class as a red to yellow overlay on top of what the model thinks
is the ideal representation of each digit. We can definitely see that the model has a clear idea of the
core features of each digit. 0,1 and 5 stand out to me in particular, while 8 and 9 perhaps require more
imagination to see. What I find very odd is the seeming importance of the border of the image for all
the digits. I'm not sure what causes this and I tried different inputs to see if the model would still focus

on the border but it seems that it is a consistent feature of the model. Finally lets have a look at what
input will minimize the loss function of the model as much as possible. This is known as the deep dream
from which we can see which parts of the image the model is most sensitive to. The results are presented
in Figure 8.

Model O: Average Ideal Image vs. Deep Dream Image
Average of Ideal Images Deep Dream Image

e

Figure 8: Average ideal image for each class and the deep dream for model 0.

The image is no doubt very strange and honestly quite disappointing. 1 was expecting to see some
clear features of the digits but the image just displays a vague blob in the center with some strange
features around the border. It mostly looked like an average of all the digits which would somewhat
make sense. I plotted that on the left-hand subplot to compare the two images. The deep dream image
is strange in that it only contains values of 0 and 1. I tried multiple inputs, learning rates and numbers
of iterations but the result was consistently the same. I suppose the two images are somewhat similar in
the most basic shapes. The border is slightly more pronounced and the rest of the focus is on the center
of the image.

5 Conclusion and Comments

I had many more ideas for this project but it is unfortunately time to move on, due to upcoming deadlines.
I wanted to get a working model using the MSE loss function but I had quite a few issues with formatting
my data since MSE is not really suited for classification tasks. This is something I might have explored
further if T had more time. I also wanted to explore the use of convolutional neural networks (CNNs) for
this task but I didn’t have the time to implement them. I think that CNNs would be a good choice for
this task since they are good at recognizing patterns in images which is exactly what we’re doing. I wish
I could have explored the deep dreams for some other models. I think it would have been interesting
to see how the model’s performance affects the deep dream. Overall though I'm happy with the overall
results and impressed at the performance of the models.

References

[1]

2]

Sudarshan Lamkhede and Christoph Kofler. Recommendations and Results Organization in Netflix
Search. arXiv e-prints, page arXiv:2105.14134, 2021.

Harald Steck and Linas et al. Baltrunas. Deep learning for recommender systems: A netflix case
study. AI Magazine, 42(3):7-18, Nov. 2021.

Chao-Yuan Wu and Christopher V. et al. Alvino. Using navigation to improve recommendations in
real-time. Proceedings of the 10th ACM Conference on Recommender Systems, 2016.

Soheil Esmaeilzadeh, Negin Salajegheh, Amir Ziai, and Jeff Boote. Abuse and fraud detection in
streaming services using heuristic-aware machine learning. arXiv e-prints, page arXiv:2203.02124,
2022.

Pandu Nayak. How Al powers great search results. Google, Feb 2022.
https://blog.google/products/search /how-ai-powers-great-search-results/.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina N. Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv e-prints, page arXiv:1810.04805, 2018.

Amnesty International. Caught in TikTok’s Surveillance =~ Web, Jan 2024.
https://www.amnesty.org/en/documents/POL40/7349,/2023 /en/ .

Dan Milmo. TikTok says it will fight US ban or forced sale after Bill passes. The Guardian,
Apr 2024. https://www.theguardian.com/technology /2024 /apr/22/tiktok-us-ban-or-forced-sale-bill-
bytedance.

Amnesty International. Driven into Darkness: How TikTok’s ‘For You’ Feed Encourages Self-Harm
and Suicidal Ideation, Jan 2024. https://www.amnesty.org/en/documents/POL40/7350,/2023 /en/.

Daniel Klug, Ella Steen, and Kathryn Yurechko. How Algorithm Awareness Impacts Algospeak Use
on TikTok. In Companion Proceedings of the ACM Web Conference 2023, WWW ’23 Companion,
page 234-237, New York, NY, USA, 2023. Association for Computing Machinery.

Abien Fred Agarap. Deep Learning using Rectified Linear Units (ReLU). arXiv e-prints, page
arXiv:1803.08375, March 2018.

10

6 Large Figures

Model O: ROC Curves for Multiple Digits

Model Hyperparameters

« Learning Rate: 0.001

« Number of Hidden Layers: 1

- Hidden Layer Sizes: 784
« Number of Epochs: 10

Batch Size: 64
Training Accuracy: 0.998
Testing Accuracy: 0.982

True Positive Rate True Positive Rate

True Positive Rate

ROC for Digit 0

ROC for Digit 1

Model Architecture

1. Linear(in_features=784,
out_features=784,
bias=True)

2. Linear(in_features=784,
out_features=10,
bias=True)

Optimizer: Adam
Criterion: CrossEntropylLoss()

ROC for Digit 2

ROC for Digit 3

1. © 1.0 © 1.0 [}
+ + +
1] « ©
0. = 9.8 = 9.8 =
o o o
=1 =1 =1
0. ‘0.6 0.6 o
H B ot
0. 3 0.4 3 0.4 4
o o o
(AU 00)
0.0 T T T " o.0 T T T " o.0 T T T i T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 .0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 4 ROC for Digit 5 ROC for Digit 6 ROC for Digit 7
© 1.0 © 1.0 [}
+ + +
© © ©
0. = 9.8 = 9.8 =
o o o
=1 =1 =1
0. ‘0.6 T 0.69 o
H B ot
0. 3 0.4 3 0.4 4
o o o
] ’]
, AU 99
. T T : " o.0 T T : " o.0 T T "o, T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 8 ROC for Digit 9 Micro-average ROC Macro-average ROC
.0 © 1.0 ©1.0] 1.
+ + +
© © ©
0. 0.8 0.
o o o
=1 =1 =1
oo 0.6 ao.
H o ot
3 0. 3 0.4 S 0.
a a a
o o 4 o
5 5
(auc 8) pal (AU 99) pal i

0.0 T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0 T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0 T
0.0 0.2 0.4

0.6 0.8 1.0
False Positive Rate

Figure 9: Testing ROC Curves for Model 0.

Model 1: ROC Curves for Multiple Digits

Model Hyperparameters

Batch Size:
Training Accuracy: 0.998
Testing Accuracy: 0.982

Learning Rate: 0.001
Number of Hidden Layers: 1
Hidden Layer Sizes: 784
Number of Epochs: 10

256

True Positive Rate True Positive Rate

True Positive Rate

ROC for Digit 0

ROC for Digit 1

0.0 T
0.0 0.2 0.4 0.6 0.8
False Positive Rate

1.0

Model Architecture

1. Linear(in_features=784,
out_features=784,
bias=True)

2. Linear(in_features=784,
out_features=10,
bias=True)

Optimizer: Adam
Criterion: CrossEntropylLoss()

ROC for Digit 2

ROC for Digit 3

©1.0 1. 1.
+ + +
1] © ©
= 9.8 = 9. = 9.
o o o
=1 =1 =1
‘0.6 oo oo
H B ot
3 0.4 3 o. 3o
o o o
4 7’
, AU 99
. T T T i 0.0 T T T i 0. T T i 0. T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 4 ROC for Digit 5 ROC for Digit 6 ROC for Digit 7
© 1.0 1. 1.
+ + +
© © ©
= 9.3 = 9. = 9.
o o o
=1 =1 =1
T 0.6) 0.) 0.
H B el
3 0.4 3o 3 o.
o o o
4 7’
’
. T T T i 0.0 T T T i 0. T T = 0. T T
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 8 ROC for Digit 9 Micro-average ROC Macro-average ROC
© 1.0 1. 1.
+ + +
© © ©
% 0.8 0. 0.
o o o
=1 =1 =1
) 0.6) 0.) 0.
H H H
3 0.4 3 0. S 0.
a a a
7’
(AuC 9) fia ’ (AU 99) fla fla

0.0 T T T
0.0 0.2 0.4 0.6 0.8 1.

False Positive Rate

c]

0.0 T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0 T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0 T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 10: Testing ROC Curves for Model 1.

11

Model 2: ROC Curves for Multiple Digits

Model Hyperparameters)) Model Architecture
. Learning Rate: 0.1 . Batch Size: 64 1. Linear(in features=784,
te: 0. ch Size: . out_features=784, . Optimizer: Adam
« Number of Hidden Layers: 1 + Training Accuracy: 0.703) b%as:True) . Criterion: CrossEntropyloss()
« Hidden Layer Sizes: 784 + Testing Accuracy: 0.706 2. Linear(in_features=784,
. . out_features=10,
« Number of Epochs: 10 bias=Tzue)
ROC for Digit ©O ROC for Digit 1 ROC for Digit 2 ROC for Digit 3
o g1 ———F @1]
+ + + +
]]] ©
= % 0.8 2 0. =
o o 7 o o
2 2 0.6 4 2 3
7 ho.6 =e ‘ooe. g
H H ’ H o
4 3 0.4 3 o. 4
a a a a
AU ’ AU 7 AU 1 , AU 76
" o.0 T T " o0 T T " o.0 T T : " o0 T T :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 4 ROC for Digit 5 ROC for Digit 6 ROC for Digit 7
© 1.0 o 1.]
+ 4 + + +
o 7 © < <
= 9.8 . = = . =
o 2 o o o
2 0.6 4 2 2 2
ho.6 , 7 oo o
E e kY k) kY
o 0.4+ ’ o o 0. o
a // a a a
.]]
g eame]| $02 | 8 ° w402
ﬁ (AUC = 0.88) ﬁ ’ (AUC 74) ﬁ (AUC 92) ﬁ ’ AUC = 0.82)
0.0 T T : : 0.0 T T : : 0.0 T T : : 0.0 T T : :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 8 ROC for Digit 9 Micro-average ROC Macro-average ROC
© 1.0 © 1.0 o o
+ + + +
1] 1] 1] 1]
= 9.8 = 9.8 = =
o o o o
2 2 2 2
‘0 0.6 ' 0.6 a g
H H H o
S 0.4 g4 S 0.4 3 3
a // a a a
] .]
% 0.2 e Roc cume ; % 0.2 % %
’ AUC = 0.84 ’
'_G.G T T T T '_0.0 T T T T '_0.0 T T T T '_0,0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
Figure 11: Testing ROC Curves for Model 2.
Model 3: ROC Curves for Multiple Digits
Model Hyperparameters i (in_feat Mod:;AArch:ltecture
. . i . Linear(in_features=784,
« Learning RaFe. 0.1 . Bat?h‘sue, 256 . out_features-784, . Optimizer: Adam
« Number of Hidden Layers: 1 + Training Accuracy: 0.918) b%as:True) . Criterion: CrossEntropyloss()
« Hidden Layer Sizes: 784 + Testing Accuracy: 0.915 2. Linear(in_features=784,
. . out_features=10,
« Number of Epochs: 10 bias=Tzue)
ROC for Digit ©O ROC for Digit 1 ROC for Digit 2 ROC for Digit 3
© 1.0 © 1.0 o © 1.0
+ + + + 7’
© © T < 7
= 9.8 = 9.8 = = 9.8 .
o o o o 2
‘0.6 ‘0 0.6 g ‘0o.6 A
H , H H H
3 0.4 £ 3 0.4 3 3 0.49
a a a a
o e M 2 ° ° "e
5027 oK ROC curve 5 9-27 oK ROC curve S S 921 PKd ___ ROC curve
ﬁ ’ (AUC = ©.97) ﬁ ’ (AUC = ©.99) ﬁ ﬁ ’ (AUC = 0.90)
0.0 T T - : 0.0 T T : : 0.0 T T : : 0.0 T T : :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 4 ROC for Digit 5 ROC for Digit 6 ROC for Digit 7
o o ©1.09 1.0
+ - - - h/’/
o T < < 4
= = = 9.8 = 9.8
o o o o
2 2 2 3
7 7 ‘006 ‘0.6
H H H o
3 3 3 z 3 0.4
a a a a
] .
AUC 5 AUC 8. V2 AUC = 0.97
"o T T o0 T T : " o.0 T T : o0 T T : :
0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 8 ROC for Digit 9 Micro-average ROC Macro-average ROC
© 1.0 © 1.0 o © 1.0
+ + + +
1] 1] 1] 1]
= 9.8 = 9.8 = = 9.8
o o o o
= 2 2 2
7 ' 0.6 a ‘0.6
H H H B
3 3 0.4 3 3 0.44
a a a a
B (AUC = 0.95) pal ’ (AUC = ©.95) pal flad ’,

0.0 T T T T 0.0 T T T T 0.0 T T T T 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate

Figure 12: Testing ROC Curves for Model 3.

12

Model 4: ROC Curves for Multiple Digits

True Positive Rate True Positive Rate

True Positive Rate

Model Hyperparameters)) Model Architecture
. Learning Rate: 0.1 . Batch Size: 16 1. Linear(in features=784,
te: 0. ch Size: . out_features=784, . Optimizer: Adam
« Number of Hidden Layers: 1 + Training Accuracy: 0.404) b%as:True) . Criterion: CrossEntropyloss()
« Hidden Layer Sizes: 784 + Testing Accuracy: 0.407 2. Linear(in_features=784,
. . out_features=10,
« Number of Epochs: 10 bias=Tzue)
ROC for Digit ©O ROC for Digit 1 ROC for Digit 2 ROC for Digit 3
© 1.0 © 1.0 [
- 7 & -
© 4 © ©
% 0.8 % 0.8 =
o 7 o o
3 0.6 ¢ 3 0.6 3
ho.6 =e ho.6 g
- ’ - o
3 0.4 3 0.44 3
a a a
meame || §02] Lo o LS | §02] Lo T
(AUC = ©.76) ﬁ ’ (AUC = ©.95) ﬁ (Auc 50) ﬁ ’ AUC = 0.73)
0.0 T T 0.0 T T 0.0 T T : 0.0 T T :

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 4 ROC for Digit 5 ROC for Digit 6 ROC for Digit 7

1. © 1.0 © 1.0 o
+ + +
1] 1] 1]
0. = 9.8 = 9.8 =
o o o
2 2 2
0. ' 0.6 ‘0.6 o
B B B
0. 3 0.4 3 0.44 3
a a a
o seame | 02 a4 w402
(AUC = 0.76) ﬁ (AUC 50) ﬁ (AUC 50) ﬁ ’ AUC = 0.77)
0.0 T T T T 0.0 T T : : 0.0 T T : : 0.0 T T : :

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 8 ROC for Digit 9 Micro-average ROC Macro-average ROC

1.0 © 1.0 o o
+ + +

1] 1] 1]

0.8 = 9.8 = =
o o o

2 2 2

0.6 ' 0.6 a g
H B ot

3 0.4 3 4

a a a

ROC curve %0-2’ g %

(AUC = 0.50) flad 7 flad flad

0.0 T T T T 0.0 T T T T 0.0 T T T T 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate

Figure 13: Testing ROC Curves for Model 4.

Model 5: ROC Curves for Multiple Digits

True Positive Rate True Positive Rate

True Positive Rate

Model Hyperparameters i (in_feat Mod:;AArch:ltecture
. . i . Linear(in_features=784,
« Learning RaFe. 0.001 . Bat?h‘sue, 256 . out_features-10, . Optimizer: Adam
« Number of Hidden Layers: 1 + Training Accuracy: 0.926) b%as:True) . Criterion: CrossEntropyloss()
« Hidden Layer Sizes: 10 + Testing Accuracy: 0.923 2. Linear(in_features=10,
« Number of Epochs: 10 . out_features=10,
bias=True)
ROC for Digit ©O ROC for Digit 1 ROC for Digit 2 ROC for Digit 3
1.0 g 1.0 8 1.09 - g 1.0 —
© T 4 < 4
0.8 = 9.8 = 9.8 e = 9.8 e
o o 2 o 2
3 3 ¢ 3 ¢
0.6 ‘0 0.6 ‘0.6 A ‘0.6 2
’ o o ’ o
0.4 Z 8 0.4 8 0.4 7 2 0.4
a a e a
e ° 2 o e o 7
0.2 // ROC curve 3 0.24 // ROC curve 3 0.2 // ROC curve 3 0.2 // ROC curve
’ (AUC = ©.98) ﬁ ’ (AUC = ©.99) ﬁ ’ ™ (AUC = 0.96) ﬁ ’ ™ (AUC = 0.95)
0.0 T T T : 0.0 T T : : 0.0 T T : : 0.0 T T : :

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 4 ROC for Digit 5 ROC for Digit 6 ROC for Digit 7

o 1.0 1.0

+ - + f/,/‘

T < < 4

= = 9.8 * 9.8

o o o

2 2 3

7 ‘006 ‘0.6

kY k) . b

o o o 0.4

a a a

[} [} v .24 ’
ROC curve S S ROC curve S 2 ___ ROC curve
(AUC = 0.97) ﬁ ﬁ (AuC 7) ﬁ ’ (AUC = 0.96)

0.0 T T 0.0 T T T 0.0 T T : 0.0 T T : :

0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 8 ROC for Digit 9 Micro-average ROC Macro-average ROC

1.0 © 1.0 o © 1.0
+ + +
1] 1] 1]
0.8 = 9.8 = = 9.8
o o o
2 2 2
' 0.6 a ‘0.6
H B o
3 0.4 3 3 0.44
a a a
ROC curve $0.21 oK ROC curve H $0.29 PKd
(AUC = 0.93) ﬁ ’ (Auc 94) ﬁ ﬁ ’

0.0 T T T T 0.0 T T T T 0.0 T T T T 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate

Figure 14: Testing ROC Curves for Model 5.

13

Model 6: ROC Curves for Multiple Digits

Model Hyperparameters

Learning Rate: 0.001
Number of Hidden Layers: 1
Hidden Layer Sizes: 5
Number of Epochs: 10

Batch Size: 256
Training Accuracy: 0.776
Testing Accuracy: 0.784

ROC for Digit O

ROC for Digit 1

Model Architecture

1. Linear(in_features=784,

. out_features=
bias=True)
2. Linear(in_features=5,
. out_features=10,
bias=True)

Optimizer:
Criterion:

Adam
CrossEntropyLoss()

ROC for Digit 2

ROC for Digit 3

© 1.0 © 1.0 1. o
+ + + +
© © 4 © ©
% 0.8 % 0.8 y 0. =
[[’ [[
2 2 0.6 4 2 3
‘0.6 ho.6 =e ‘ooe. g
- - ’ B o
4 3 0.4 3 o. 4
a a a a
g meame | §02] Lo]| g ° | §02] - T
ﬁ (AUC = ©.93) ﬁ ’ (AUC = 0.97) ﬁ (Auc 87) ﬁ ’ AUC = 0.82)
0.0 T T 0.0 T T 0.0 T T : .0 T T :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 4 ROC for Digit 5 ROC for Digit 6 ROC for Digit 7
1. © 1.0 © 1.0 o
+ + + 4 +
o © < 7 <
= 9. = 9.8 * 9.8 . =
o o o o
= 2 2 2
oo ' 0.6 ‘0.6 o
H H H B
3 o. 3 0.4 3 0.47 3
a a a a
1 .]
go. e | g0 a8 o BELE
ﬁ (AUC = 0.91) ﬁ ’ (AUC 79) ﬁ (AUC 95) ﬁ ’ AUC = 0.90)
0.0 T T : : 0.0 T T : : 0.0 T T : : .0 T T : :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 8 ROC for Digit 9 Micro-average ROC Macro-average ROC
© 1.0 © 1.0 o o
+ + + +
1] 1] 1] 1]
= 9.8 = 9.8 = =
o o o o
= 2 2 2
‘0 0.6 ' 0.6 a g
B B B o
S 0.4 g4 S 0.4 3 3
a // a a a
] .]
go2y . RocTcoses go.2 g g
’ (AUC = 0.76) ’
'_G.G T T T T '_0.0 T T T T '_0.0 T T T T '_0,0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
Figure 15: Testing ROC Curves for Model 6.
Model 7: ROC Curves for Multiple Digits
Model Hyperparameters i (in_feat Mod:;AArch:ltecture
. . i . Linear(in_features=784,
« Learning RaFe. 0.001 . Bat?h‘sue, 256 . out_features-1, . Optimizer: Adam
« Number of Hidden Layers: 1 + Training Accuracy: 0.257) b%as:True) . Criterion: CrossEntropyloss()
« Hidden Layer Sizes: 1 + Testing Accuracy: 0.257 2. Linear(in_features=1,
. . out_features=:
« Number of Epochs: 10 bias=Tzue)
ROC for Digit ©O ROC for Digit 1 ROC for Digit 2 ROC for Digit 3
© 1.0 © 1.0 © 1.0 © 1.0
+ + + +
] 1]] ©
= 9.8 = 9.8 = 9.8 = 9.8
o o o o
= 2 2 2
‘0.6 ‘0 0.6 ‘0 0.64 ‘0.6
e o o sl
3 0.4 3 6.4 3 0.44 3 0.44
a a ’ a a
]] ’]]
(AUC = 0.50) (AUC = 0.67) (AUC AUC = 0.50)
" o.0 T T - : " o0 T T : : " o0 T T : : " o0 T T : :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 4 ROC for Digit 5 ROC for Digit 6 ROC for Digit 7
© 1.0 © 1.0 © 1.0 © 1.0
+ + + +
1] 1] 1] 1]
= 9.8 = 9.8 = 9.8 = 9.8
o o o o
2 0.6 2 0.6 3 0.6 3 0.6
ho.6 ho.6 R ‘0o
H H H H
3 s 3 0.4 3 0.44 3 0.44
a a a a
]]] .
g meame || 402 a4 02 | g0 - i
ﬁ (AUC = 0.88) ﬁ (AUC 50) ﬁ (AuC 50) ﬁ ’ (AUC = 0.74)
0.0 T T 0.0 T T : 0.0 T T : .0 T T :
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 8 ROC for Digit 9 Micro-average ROC Macro-average ROC
© 1.0 © 1.0 o © 1.0
+ + + +
1] 1] 1] 1]
= 9.8 = 9.8 = = 9.8
o o o o
2 2 0.6 2 3061
7 ho.6 a R
H H H B
3 3 0.4 3 3 0.44
a a a a
3 ROC curve $0.21 /| ROC curve H $0.29 oK
B (AUC = 0.50) pal s (AUC 51) H i ’
0.0 T T T T 0.0 T T T T 0.0 T T T T 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 16: Testing ROC Curves for Model 7.

False Positive Rate

14

False Positive Rate

False Positive Rate

Model 8: ROC Curves for Multiple Digits

Model Hyperparameters

Learning Rate: 0.001
Number of Hidden Layers: 1
Hidden Layer Sizes: 1
Number of Epochs: 10

Batch Size: 256
Training Accuracy: 0.187
Testing Accuracy: 0.189

ROC for Digit O

ROC for Digit 1

Model Architecture

1. Linear(in_features=784,
out_features=:
bias=True)

2. Linear(in_features=
out_features=10,
bias=True)

3. Sigmoid()

Optimizer: Adam
Criterion: CrossEntropyLoss()

ROC for Digit 2

ROC for Digit 3

@ 1.04 @ 1.04 @ 1.0 @ 1.0
+ + + +
]] P] ©
% 0.8 % 0.8 y % 0.8 % 0.8
[[’ [[
2 0.6 2 0.6 4 3 0.6 2 0.6
po.6 ho.6 =e ho.6 hoe.6
o o ’ o o
3 0.4 3 0.4 3 0.44 3 0.4
a a a a
g 0.2 w4021 [a4 e LS T
fa (AUC = ©.50) fa b (AUC = ©.71) fa (AUC 50) fal AUC = 0.50)
0.0 T T 0.0 T T 0.0 T T : 0.0 T T :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 4 ROC for Digit 5 ROC for Digit 6 ROC for Digit 7
© 1.0 © 1.0 © 1.0 © 1.0
+ + + +
1] 1] 1] 1]
= 9.8 = 9.8 = 9.8 = 9.8
o o o o
= 2 2 2
' 0.6 ' 0.6 ‘0.6 ‘0.6
H H H H
3 0.4 3 0.4 3 0.44 3 0.4
a a a a
(AUC = 0.50) (AUC = 0.50) (AUC = 0.50) AUC = 0.50)
o0 T T : : " o.0 T T : : " o0 T T : : o0 T T : :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 8 ROC for Digit 9 Micro-average ROC Macro-average ROC
© 1.0 © 1.0 o o
+ + + +
1] 1] 1] 1]
= 9.8 = 9.8 = =
o o o o
= 2 2 2
‘0 0.6 ' 0.6 a g
B B B o
S 0.4 g4 S 0.4 3 3
a // a a a
1 .]
go2{ /. RocTcoses go.2 g g
72 (AUC = 0.74) /
'_G.O T T T T '_0.0 T T T T '_0.0 T T T T '_0,0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
Figure 17: Testing ROC Curves for Model 8.
Model 9: ROC Curves for Multiple Digits
Model Hyperparameters 1L (in_feat Mo#:; Architecture
. . i . Linear(in_features=784,
« Learning RaFe. 0.001 . Bat?h‘sue, 256 . out_features-7840, . Optimizer: Adam
« Number of Hidden Layers: 1 + Training Accuracy: 0.998 bias=True) . Criterion: CrossEntropyloss()
« Hidden Layer Sizes: 7840 + Testing Accuracy: 0.982 2. Linear(in_features=7840,
« Number of Epochs: 10 . out_features=10,
bias=True)
ROC for Digit ©O ROC for Digit 1 ROC for Digit 2 ROC for Digit 3
o 1. @ 1. @ 1. @ 1.0
8 1.0 8 1.0 8 1.0 2 8 1.0 2
© © T 7 < 7
= 9.8 = 9.8 = 9.8 . = 9.8 .
o o o 2 o 2
' '
2 2 2 ’ 2 ,
‘0.6 ‘0 0.6 ‘0o.6 A ‘0.6 A
- ’ Bl Bl ’ o
2 0.4 Z 8 0.4 8 0.4 7 2 0.4
a a a e a
g -~ ° e ° e ° e
=1 0.2 // ROC curve =1 0.2 // ROC curve 3 0.2 // 3 0.2 // ROC curve
fa ’ (AUC = 1.00) fa ’ (AUC = ©.99)] ’] ’ AUC = 0.99)
0.0 T T - : 0.0 T T : : 0.0 T T : : 0.0 T T : :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 4 ROC for Digit 5 ROC for Digit 6 ROC for Digit 7
© 1.0 ® 1.0 © 1.0 © 1.0
g0 g1o 7 810 g1e >
© © 4 © © s
= 9.8 = 9.8 a = 9.8 * 9.8
o o 7 o o
2 0.6 2 0.6 4 3 0.6 2 o6
ho.6 ho.6 =e R ‘0o
H H H H
2 4 So. 3 ‘ 3 0.4
a a a a
] .
(AUC 0.99) (AUC 9) 7 (AUC 0.99)
"o T T Fo. T T : " o.0 T T : o0 T T :
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 8 ROC for Digit 9 Micro-average ROC Macro-average ROC
© 1.0 © 1.0 o © 1.0
+ + + +
1] 1] 1] 1]
= 9.8 = 9.8 = = 9.8
o o o o
2 2 0.6 2 2 0.6
7 ho.6 a R
B B B B
3 3 0.4 3 3 0.44
a a a a
3 ROC curve $0.21 7 ROC curve H $0.29 PKd
ﬁ (AUC = 0.99) ﬁ ’ (Auc 99) ﬁ ﬁ ’
0.0 T T T T 0.0 T T T T 0.0 T T T T 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

False Positive Rate

False Positive Rate

False Positive Rate

Figure 18: Testing ROC Curves for Model 9.

15

Model 10: ROC Curves for Multiple Digits

Model Hyperparameters i (dn_feat Mo:::. Architecture
. . i . Linear(in_features=784,
« Learning Ratfe. 0.001 . Bat§h‘Sue» 256 . out_features=78400, . Optimizer: Adam
« Number of Hidden Layers: 1 « Training Accuracy: 0.995 bias=True) . Criterion: CrossEntropyloss()
« Hidden Layer Sizes: 78400 + Testing Accuracy: 0.979 2. Linear(in_features=78400,
« Number of Epochs: 10 . out_features=10,
bias=True)

ROC for Digit O ROC for Digit 1 ROC for Digit 2 ROC for Digit 3

1.0 @ 1.0+ @ 1.0+ ® 1.0
+ + + +
]] P] ©
% 0.8 % 0.8 % 0.8 % 0.8
o o < o o 4
4 '
A 2 - a 2 .
‘0.6 ‘0.6 =e ‘0.6 ‘0.6
H H ’ H o
4 2 0.4 8 0.4 P 2 0.4
a a a // a
o o 4 3 3 4
=1 ROC curve 3 6.2 // ROC curve 3 ROC curve 3 0.2 // 0C curve
ﬁ (AUC = ©.99) ﬁ ’ (AUC = ©.99) ﬁ (AUC 99) ﬁ ’ AUC = 0.98)
0.0 T T 0.0 T T 0.0 T T : 0.0 T T :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 4 ROC for Digit 5 ROC for Digit 6 ROC for Digit 7
© 1.0 ©1.0 © 1.0 1.0
+ 7’ + + 7’ +
g o E 5 &
= 9.8 . 0.8 0.8 . 0.8
o 2 o o o .
2 | ’ 2] 2] 2] ’
ho.6 , ho.6 ho.6 ‘0o A
H , H H H
S 0.4 g4 S 0.4 3 0.4 8 0.44
a // a a a
o . o i o . o]
=1 ROC curve 3 6.2 ’ ROC curve 3 ROC curve 3 0.2 ’ ROC curve
ﬁ (AUC = 0.98) ﬁ ’ (AUC 99) ﬁ (AUC 99) ﬁ ’ AUC = 0.99)
0.0 T T : : .0 T T : : .0 T T : : .0 T T : :
0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 8 ROC for Digit 9 Micro-average ROC Macro-average ROC
© 1.0 © 1.0 o o
+ + + +
1] 1] 1] 1]
= 9.8 = 9.8 = =
o o o o
7 2 3 2
ho.6 ho.6 a g
B B B o
S 0.4 g4 S 0.4 3 3
a // a a a
o 4 7’ Q 4 o o
2 8.2 7 ROC curve = 0.2 = g
’ (AUC = 0.98) ’
'_G.G T T T T '_0.0 T T T T '_0.0 T T T T '_0,0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
Figure 19: Testing ROC Curves for Model 10.
Model 12: ROC Curves for Multiple Digits
Model Architecture
1. Linear(in_features=784, 4. Linear(in_features=196,
Model Hyperparameters . ut_features=784, . out_features=10,
- Learning Rate: 0.001 - Batch Size: 256 bias=True) bias=True)
= Number of Hidden Layers: 1 » Training Accuracy: 0.996 2. Linear(in_features=784, « Optimizer: Adam
. Hidden Layer Sizes: (784,392,196) » Testing Accuracy: 0.979 - gﬁgfiiﬁgf”’”?' « Criterion: CrossEntropylLoss()
» Number of Epochs: 10 3. Linear(in_features=392,
. out_features=196,
bias=True)

ROC for Digit O ROC for Digit 1 ROC for Digit 2 ROC for Digit 3

True Positive Rate

True Positive Rate

True Positive Rate

1.0 © 1.0 1.0 1.0
+ + 7’ + ’
© T 4 < 4
0.8 = 9.8 = 9.8 e = 9.8 e
. . . o 2 . 2
' '
2 7 ’ 2 ,
0.6 ‘0 0.6 ‘0o.6 A ‘0.6 A
’ o o ’ o
0.4 Z 8 0.4 8 0.4 7 2 0.4
a a e a
e ° 2 o e o 7
0.2 // ROC curve 3 0.24 // ROC curve 3 0.2 // 3 0.2 // ROC curve
’ (AUC = ©.99) ﬁ ’ (AUC = 1.00) ﬁ ’ ﬁ ’ AUC = 0.99)
0.0 T T - : .0 T T : : .0 T T : : .0 T T : :

0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 4 ROC for Digit 5 ROC for Digit 6 ROC for Digit 7

.0 © 1.0 © 1.0 @ 1.0
1.0 g1o - g0 g1e >
© 4 © © s
0.8 = 9.8 a = 9.8 = 9.8
o 7 o o
J 2 0.6 4 2 o6 3 0.6
0.6 ho.6 =e R ‘0o
.-q .-q o
£ 3 o. 3 z 8 0.4
a a a
[} [} v .24 ’
ROC curve 3 3 ROC curve 3 // 0C curve
(AUC = 0.99) ﬁ (ﬁ (Auc 9) ﬁ ’ (AUC = 0.98)
0.0 T T . T T : .0 T T : .0 T T :

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 8 ROC for Digit 9 Micro-average ROC Macro-average ROC

1.0 © 1.0 o © 1.0
+ + +
1] 1] 1]
0.8 = 9.8 = = 9.8
o o o
2 2 2
' 0.6 a ‘0.6
H B o
3 0.4 3 3 0.44
a a a
o - o Q 4
ROC curve 5027 2 ROC curve S 5021 -
(AUC = ©.97) ﬁ ’ (Auc 99) ﬁ ﬁ ’
0.0 T T T T 0.0 T T T T 0.0 T T T T 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate False Positive Rate False Positive Rate False Positive Rate

Figure 20: Testing ROC Curves for Model 12.

16

Model 13: ROC Curves for Multiple Digits

False Positive Rate

False Positive Rate

False Positive Rate

Figure 22: Testing ROC Curves for Model 15.

17

Model Architecture
1. Linear(in_features=784, 4. Linear(in_features=3136,
Model Hyperparameters . out_features=784, . out_features=10,
» Learning Rate: 0.001 + Batch Size: 256 bias=True) bias=True
» Number of Hidden Layers: 1 + Training Accuracy: 0.997 2. Linear(in_features=784, « Optimizer: Adam
. Hidden Layer Sizes: [784,1568,3136] « Testing Accuracy: 0.981 . E;;iii;:;gszi-‘“ « Criterion: CrossEntropylLoss()
» Number of Epochs: 10 3. Linear(in_features=1568,
. out_features=3136,
bias=True)
ROC for Digit ©O ROC for Digit 1 ROC for Digit 2 ROC for Digit 3
© 1.0 © 1.0 1.0 1.0
+ + s + +
© © 4 © ©
% 0.8 % 0.8 % 0.8 % 0.8
[[’ [[
2 0.6 2 0.6 4 3 0.6 Zo.6]
po.6 ho.6 ho.6 g hoe.6
sl sl sl sl
3 0.4 3 0.4 3 0.44 3 0.49
a a a a
o - o 4 3 4 3 4
Y ., (AUC = 1.00) Y (AUC = 0.99) Y (AUC = 0.99)
" o.0 T T : : " o0 T T : : " o.0 T T : : " o0 T T : :
0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 4 ROC for Digit 5 ROC for Digit 6 ROC for Digit 7
o]] J J
g1o g1o - g0 - g1e >
1] 1] 1] 1]
= 9.8 = 9.8 = 9.8 * 9.8
o o o o
2 2 2 2
0.6 ' 0.6 ‘0o.6 ‘0.6
H H H H
3 0.4 3 0.4 3 3 0.44
a a a a
0 0.2 0 0.2]]
S P ROC curve S P ROC curve S ROC curve S ROC curve
ﬁ ’ (AUC 99) ﬁ ’ (AUC 99) ﬁ (AU 0.99) ﬁ (AUC = ©.99)
0.0 T T : : .0 T T : : 0.0 T T : : 0.0 T T : :
0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 8 ROC for Digit 9 Micro-average ROC Macro-average ROC
© 1.0 © 1.0 o o
+ + + +
1] 1] 1] 1]
= 9.8 = 9.8 = =
o o o o
= 2 2 2
' 0.6 ' 0.6 a g
B B B o
3 o. 3 0.4 Z 3 4
a a a a
o Q 4 4 Q o
" P : :
(AUC 98) td (AUC 99)
'_G.G T T T T '_0.0 T T T T '_0.0 T T T T '_0,0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
Figure 21: Testing ROC Curves for Model 13.
Model 15: ROC Curves for Multiple Digits
Model Architecture
1. Linear(in_features=784, 4. Linear(in_features=784,
Model Hyperparameters . out_features=784, . out_features=10,
- Learning Rate: 0.001 Batch Size: 256 bias=True) bias=True)
= Number of Hidden Layers: 1 Training Accuracy: 0.995 2. Linear(in_features=784, « Optimizer: Adam
o+ Hidden Layer Sizes: (784,784,784] Testing Accuracy: 0.979 - ;;}fiﬁges”s“' « Criterion: CrossEntropylLoss()
» Number of Epochs: 10 3. Linear(in_features=784,
. out_features=784,
bias=True)
ROC for Digit ©O ROC for Digit 1 ROC for Digit 2 ROC for Digit 3
© 1.0 © 1.0 © 1.0 1.0
+ + + +
] 1]] ©
% 0.8 % 0.8 % 0.8 0.
o o o o
= 2 2 2
‘0.6 ‘0 0.6 ‘0o.6 ‘ooe.
sl sl sl sl
3 o. 3 0.4 3 0.44 z 3 0.
a a a a
o o 4 o 4 o
=1 ©. ROC curve 3 2 // ROC curve 3 0.2 // ROC curve 3 0. ROC curve
fa (AUC 00) fa ’ (AUC = 1.00) fa ’ (AUC = 0.99) fa (AUC = 0.99)
0.0 T T - : .0 T T : : 0.0 T T : : 0.0 T T : :
0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 4 ROC for Digit 5 ROC for Digit 6 ROC for Digit 7
© 1.0 © 1.0 © 1.0 © 1.0
+ + + +
1] 1] 1] 1]
= 9.8 = 9.8 = 9.8 = 9.8
o o o o
3 0.6 3 0.6 3 0.6 2 o6
ho.6 ho.6 R ‘0o
o o ’ o ’ oo ’
u w td w e n 7’
S 0.4 o o o
a a a a
[0} [} [} [
" : : :
AU 98
o0 T T o0 T T : " o.0 T T : o0 T T :
0.0 0.2 0.4 0.6 0.8 1. 0.0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate False Positive Rate
ROC for Digit 8 ROC for Digit 9 Micro-average ROC Macro-average ROC
© 1.0 © 1.0 o 1.0
+ + s + +
© © 4 © ©
= 9.8 = 9.8 = = 9.8
o P o P o o
> ’ > , > >
o 4 o 4 o o 4
ho.6 ho.6 a R
H H H H
3 0.4 3 0.4 3 3 0.44
a a a a
o - o 4 Q Q 4
E 0.2 Roc] s 2 Roc] S g 0.2
’ (AUC ’ (Auc ’
'_0.0 T T T T ’_0.0 T T T T ’_0.0 T T T T ’_0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

	Introduction
	Machine Learning and Neural Networks

	Task
	Classification with Neural Networks
	Deep Dream and Class Maximization

	Solution Overview
	Results
	Classification with Neural Networks
	Deep Dream and Class Maximization

	Conclusion and Comments
	Large Figures

